Continuity of condenser capacity under holomorphic motions

2020 ◽  
pp. 1-9
Author(s):  
Stamatis Pouliasis

Abstract We show that condenser capacity varies continuously under holomorphic motions, and the corresponding family of the equilibrium measures of the condensers is continuous with respect to the weak-star convergence. We also study the behavior of uniformly perfect sets under holomorphic motions.

2002 ◽  
Vol 132 (3) ◽  
pp. 531-544 ◽  
Author(s):  
ZHENG JIAN-HUA

We investigate uniform perfectness of the Julia set of a transcendental meromorphic function with finitely many poles and prove that the Julia set of such a meromorphic function is not uniformly perfect if it has only bounded components. The Julia set of an entire function is uniformly perfect if and only if the Julia set including infinity is connected and every component of the Fatou set is simply connected. Furthermore if an entire function has a finite deficient value in the sense of Nevanlinna, then it has no multiply connected stable domains. Finally, we give some examples of meromorphic functions with uniformly perfect Julia sets.


2010 ◽  
Vol 21 (01) ◽  
pp. 77-115 ◽  
Author(s):  
ROBERT J. BERMAN

Let X be a domain in a closed polarized complex manifold (Y,L), where L is a (semi-) positive line bundle over Y. Any given Hermitian metric on L induces by restriction to X a Hilbert space structure on the space of global holomorphic sections on Y with values in the k-th tensor power of L (also using a volume form ωn on X. In this paper the leading large k asymptotics for the corresponding Bergman kernels and metrics are obtained in the case when X is a pseudo-concave domain with smooth boundary (under a certain compatibility assumption). The asymptotics are expressed in terms of the curvature of L and the boundary of X. The convergence of the Bergman metrics is obtained in a more general setting where (X,ωn) is replaced by any measure satisfying a Bernstein–Markov property. As an application the (generalized) equilibrium measure of the polarized pseudo-concave domain X is computed explicitly. Applications to the zero and mass distribution of random holomorphic sections and the eigenvalue distribution of Toeplitz operators will be described elsewhere.


2014 ◽  
Vol 36 (1) ◽  
pp. 215-255 ◽  
Author(s):  
SAMUEL SENTI ◽  
HIROKI TAKAHASI

For strongly dissipative Hénon maps at the first bifurcation parameter where the uniform hyperbolicity is destroyed by the formation of tangencies inside the limit set, we establish a thermodynamic formalism, i.e. we prove the existence and uniqueness of an invariant probability measure that minimizes the free energy associated with a non-continuous geometric potential$-t\log J^{u}$, where$t\in \mathbb{R}$is in a certain large interval and$J^{u}$denotes the Jacobian in the unstable direction. We obtain geometric and statistical properties of these measures.


1994 ◽  
Vol 343 (2) ◽  
pp. 927 ◽  
Author(s):  
C. J. Earle ◽  
I. Kra ◽  
S. L. Krushkal'

2020 ◽  
pp. 1-68
Author(s):  
YURI LIMA

Abstract This survey describes the recent advances in the construction of Markov partitions for non-uniformly hyperbolic systems. One important feature of this development comes from a finer theory of non-uniformly hyperbolic systems, which we also describe. The Markov partition defines a symbolic extension that is finite-to-one and onto a non-uniformly hyperbolic locus, and this provides dynamical and statistical consequences such as estimates on the number of closed orbits and properties of equilibrium measures. The class of systems includes diffeomorphisms, flows, and maps with singularities.


1996 ◽  
Vol 48 (2) ◽  
pp. 225-243
Author(s):  
Alexandru Aleman ◽  
Stefan Richter ◽  
William T. Ross

AbstractFor a bounded region G ⊂ ℂ and a compact set K ⊂ G, with area measure zero, we will characterize the invariant subspaces ℳ (under ƒ → zƒ) of the Bergman space (G \ K), 1 ≤ p < ∞, which contain (G) and with dim(ℳ/(z - λ)ℳ) = 1 for all λ ∈ G \ K. When G \ K is connected, we will see that dim(ℳ/(z - λ)ℳ) = 1 for all λ ∈ G \ K and thus in this case we will have a complete description of the invariant subspaces lying between (G) and (G \ K). When p = ∞, we will remark on the structure of the weak-star closed z-invariant subspaces between H∞(G) and H∞(G \ K). When G \ K is not connected, we will show that in general the invariant subspaces between (G) and (G \ K) are fantastically complicated. As an application of these results, we will remark on the complexity of the invariant subspaces (under ƒ → ζƒ) of certain Besov spaces on K. In particular, we shall see that in the harmonic Dirichlet space , there are invariant subspaces ℱ such that the dimension of ζℱ in ℱ is infinite.


2016 ◽  
Vol 91 (1) ◽  
pp. 65-106 ◽  
Author(s):  
François Ledrappier ◽  
Yuri Lima ◽  
Omri Sarig

1995 ◽  
Vol 47 (4) ◽  
pp. 673-683 ◽  
Author(s):  
R. M. Aron ◽  
B. J. Cole ◽  
T. W. Gamelin

AbstractLet 𝒳 be a complex Banach space, with open unit ball B. We consider the algebra of analytic functions on B that are weakly continuous and that are uniformly continuous with respect to the norm. We show these are precisely the analytic functions on B that extend to be weak-star continuous on the closed unit ball of 𝒳**. If 𝒳* has the approximation property, then any such function is approximable uniformly on B by finite polynomials in elements of 𝒳*. On the other hand, there exist Banach spaces for which these finite-type polynomials fail to approximate. We consider also the approximation of entire functions by finite-type polynomials. Assuming 𝒳* has the approximation property, we show that entire functions are approximable uniformly on bounded sets if and only if the spectrum of the algebra of entire functions coincides (as a point set) with 𝒳**.


Sign in / Sign up

Export Citation Format

Share Document