Recent advances in wind turbine technologies and sensing for structural health monitoring

2018 ◽  
Vol 07 ◽  
Author(s):  
Christopher Niezrecki
2013 ◽  
Vol 558 ◽  
pp. 364-373 ◽  
Author(s):  
Stuart G. Taylor ◽  
Kevin M. Farinholt ◽  
Gyu Hae Park ◽  
Charles R. Farrar ◽  
Michael D. Todd ◽  
...  

This paper presents ongoing work by the authors to implement real-time structural health monitoring (SHM) systems for operational research-scale wind turbine blades. The authors have been investigating and assessing the performance of several techniques for SHM of wind turbine blades using piezoelectric active sensors. Following a series of laboratory vibration and fatigue tests, these techniques are being implemented using embedded systems developed by the authors. These embedded systems are being deployed on operating wind turbine platforms, including a 20-meter rotor diameter turbine, located in Bushland, TX, and a 4.5-meter rotor diameter turbine, located in Los Alamos, NM. The SHM approach includes measurements over multiple frequency ranges, in which diffuse ultrasonic waves are excited and recorded using an active sensing system, and the blades global ambient vibration response is recorded using a passive sensing system. These dual measurement types provide a means of correlating the effect of potential damage to changes in the global structural behavior of the blade. In order to provide a backdrop for the sensors and systems currently installed in the field, recent damage detection results for laboratory-based wind turbine blade experiments are reviewed. Our recent and ongoing experimental platforms for field tests are described, and experimental results from these field tests are presented. LA-UR-12-24691.


2021 ◽  
Vol 263 (2) ◽  
pp. 4079-4087
Author(s):  
Murat Inalpolat ◽  
Caleb Traylor

Noise generated by turbulent boundary layer over the trailing edge of a wind turbine blade under various flow conditions is predicted and analyzed for structural health monitoring purposes. Wind turbine blade monitoring presents a challenge to wind farm operators, and an in-blade structural health monitoring system would significantly reduce O&M costs. Previous studies into structural health monitoring of blades have demonstrated the feasibility of designing a passive detection system based on monitoring the flow-generated acoustic spectra. A beneficial next step is identifying the robustness of such a system to wind turbine blades under different flow conditions. To examine this, a range of free stream air velocities from 5 m/s to 20 m/s and a range of rotor speeds from 5 rpm to 20 rpm are used in a reduced-order model of the flow-generated sound in the trailing edge turbulent boundary layer. The equivalent lumped acoustics sources are predicted based on the turbulent flow simulations, and acoustic spectra are calculated using acoustic ray tracing. Each case is evaluated based on the changes detected when damage is present. These results can be used to identify wind farms that would most benefit from this monitoring system to increase efficiency in deployment of turbines.


2017 ◽  
Vol 17 (4) ◽  
pp. 815-822 ◽  
Author(s):  
Jochen Moll ◽  
Philip Arnold ◽  
Moritz Mälzer ◽  
Viktor Krozer ◽  
Dimitry Pozdniakov ◽  
...  

Structural health monitoring of wind turbine blades is challenging due to its large dimensions, as well as the complex and heterogeneous material system. In this article, we will introduce a radically new structural health monitoring approach that uses permanently installed radar sensors in the microwave and millimetre-wave frequency range for remote and in-service inspection of wind turbine blades. The radar sensor is placed at the tower of the wind turbine and irradiates the electromagnetic waves in the direction of the rotating blades. Experimental results for damage detection of complex structures will be presented in a laboratory environment for the case of a 10-mm-thick glass-fibre-reinforced plastic plate, as well as a real blade-tip sample.


Author(s):  
Kyle Bassett ◽  
Rupp Carriveau ◽  
David S.-K. Ting

Structural health monitoring is a technique devised to monitor the structural conditions of a system in an attempt to take corrective measures before the system fails. A passive structural health monitoring technique is presented, which serves to leverage historic time series data in order to both detect and localize damage on a wind turbine blade aerodynamic model. First, vibration signals from the healthy system are recorded for various input conditions. The data is normalized and auto-regressive (AR) coefficients are determined in order to uniquely identify the normal behavior of the system for each input condition. This data is then stored in a healthy state database. When the structural condition of the system is unknown the vibration signals are acquired, normalized and identified by their AR coefficients. Damage is detected through the residual error which is calculated as the difference between the AR coefficients of the unknown and healthy structural conditions. This technique is tailored for wind turbines and the application of this approach is demonstrated in a wind tunnel using a small turbine blade held with four springs to create a dual degree-of-freedom system. The vibration signals from this system are characterized by free-stream speed. Damage is replicated through mass addition on each of the blades ends and is located by an increase in residual error from the accelerometer mounted closest to the damaged area. The outlined procedure and demonstration illustrate a single stage structural health monitoring technique that, when applied on a large scale, can avoid catastrophic turbine disasters and work to effectively reduce the maintenance costs and downtime of wind farm operations.


Wind Energy ◽  
2019 ◽  
Vol 22 (5) ◽  
pp. 698-711 ◽  
Author(s):  
Carlos Quiterio Gómez Muñoz ◽  
Fausto Pedro García Marquez ◽  
Borja Hernandez Crespo ◽  
Kena Makaya

2019 ◽  
Vol 143 ◽  
pp. 611-621 ◽  
Author(s):  
T. Rubert ◽  
G. Zorzi ◽  
G. Fusiek ◽  
P. Niewczas ◽  
D. McMillan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document