scholarly journals Almost Injective Mappings of Totally Bounded Metric Spaces into Finite Dimensional Euclidean Spaces

2019 ◽  
Vol 09 (06) ◽  
pp. 555-566
Author(s):  
Gábor Sági
2019 ◽  
Vol 62 (1) ◽  
pp. 71-74
Author(s):  
Tadeusz Figiel ◽  
William Johnson

AbstractA precise quantitative version of the following qualitative statement is proved: If a finite-dimensional normed space contains approximately Euclidean subspaces of all proportional dimensions, then every proportional dimensional quotient space has the same property.


2017 ◽  
Vol 20 (K2) ◽  
pp. 107-116
Author(s):  
Diem Thi Hong Huynh

We show first the definition of variational convergence of unifunctions and their basic variational properties. In the next section, we extend this variational convergence definition in case the functions which are defined on product two sets (bifunctions or bicomponent functions). We present the definition of variational convergence of bifunctions, icluding epi/hypo convergence, minsuplop convergnece and maxinf-lop convergence, defined on metric spaces. Its variational properties are also considered. In this paper, we concern on the properties of epi/hypo convergence to apply these results on optimization proplems in two last sections. Next we move on to the main results that are approximations of typical and important optimization related problems on metric space in terms of the types of variational convergence are equilibrium problems, and multiobjective optimization. When we applied to the finite dimensional case, some of our results improve known one.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Ryan Joseph Rogers ◽  
Ning Zhong

In this note, we provide the definition of a metric space and establish that, while all Euclidean spaces are metric spaces, not all metric spaces are Euclidean spaces. It is then natural and interesting to ask which theorems that hold in Euclidean spaces can be extended to general metric spaces and which ones cannot be extended. We survey this topic by considering six well-known theorems which hold in Euclidean spaces and rigorously exploring their validities in general metric spaces.


1988 ◽  
Vol 109 ◽  
pp. 47-61 ◽  
Author(s):  
Jürgen Potthoff

In this article we prove a number of inequalities of Littlewood-Paley-Stein (LPS) type for functions on general Gaussian spaces (s. below).In finite dimensional Euclidean spaces (with Lebesgue measure) the power of such inequalities has been demonstrated in Stein’s book [12]. In his second book [13], Stein treats other spaces too: also the situation of a general measure space (X, μ). However the latter case is too general to allow for a rich class of inequalities (cf. Theorem 10 in [13]).


1972 ◽  
Vol 24 (2) ◽  
pp. 312-327 ◽  
Author(s):  
B. B. Phadke

The spaced of this paper is a metrization, with a not necessarily symmetric distance xy, of an open convex set D in the n-dimensional affine space An such that xy + yz = xz if and only if x, y, z lie on an affine line with y between x and z and such that all the balls px ≦ p are compact. These spaces are called straight desarguesian G-spaces or sometimes open projective metric spaces. The hyperbolic geometry is an example; a large variety of other examples is studied by contributors to Hilbert's problem IV. When D = An and all the affine translations are isometries for the metric xy, the space is called a Minkowskian space or sometimes a finite dimensional Banach space, the (not necessarily symmetric) distance of a Minkowskian space being a (positive homogeneous) norm. In this paper geometric conditions in terms of equidistant loci are given for the space R to be a Minkowskian space.


2016 ◽  
Vol 68 (4) ◽  
pp. 876-907 ◽  
Author(s):  
Mikhail Ostrovskii ◽  
Beata Randrianantoanina

AbstractFor a fixed K > 1 and n ∈ ℕ, n ≫ 1, we study metric spaces which admit embeddings with distortion ≤ K into each n-dimensional Banach space. Classical examples include spaces embeddable into log n-dimensional Euclidean spaces, and equilateral spaces.We prove that good embeddability properties are preserved under the operation of metric composition of metric spaces. In particular, we prove that n-point ultrametrics can be embedded with uniformly bounded distortions into arbitrary Banach spaces of dimension log n.The main result of the paper is a new example of a family of finite metric spaces which are not metric compositions of classical examples and which do embed with uniformly bounded distortion into any Banach space of dimension n. This partially answers a question of G. Schechtman.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Li ◽  
Xing Wang ◽  
Nan-Jing Huang

A system of differential set-valued variational inequalities is introduced and studied in finite dimensional Euclidean spaces. An existence theorem of weak solutions for the system of differential set-valued variational inequalities in the sense of Carathéodory is proved under some suitable conditions. Furthermore, a convergence result on Euler time-dependent procedure for solving the system of differential set-valued variational inequalities is also given.


Sign in / Sign up

Export Citation Format

Share Document