scholarly journals Indigenous Land Management Practices and Land Cover Change in Akwa Ibom State, Nigeria

2014 ◽  
Vol 05 (16) ◽  
pp. 1541-1552 ◽  
Author(s):  
Jacob Atser ◽  
Ekong Faith ◽  
Uwem Ituen ◽  
Ekpa James
EcoHealth ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 171-176 ◽  
Author(s):  
Rosalie Schultz ◽  
Tammy Abbott ◽  
Jessica Yamaguchi ◽  
Sheree Cairney

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1217
Author(s):  
Manan Bhan ◽  
Simone Gingrich ◽  
Sarah Matej ◽  
Steffen Fritz ◽  
Karl-Heinz Erb

Tree cover (TC) and biomass carbon stocks (CS) are key parameters for characterizing vegetation and are indispensable for assessing the role of terrestrial ecosystems in the global climate system. Land use, through land cover change and land management, affects both parameters. In this study, we quantify the empirical relationship between TC and CS and demonstrate the impacts of land use by combining spatially explicit estimates of TC and CS in actual and potential vegetation (i.e., in the hypothetical absence of land use) across the global tropics (~23.4° N to 23.4° S). We find that land use strongly alters both TC and CS, with stronger effects on CS than on TC across tropical biomes, especially in tropical moist forests. In comparison to the TC-CS correlation observed in the potential vegetation (biome-level R based on tropical ecozones = 0.56–0.90), land use strongly increases this correlation (biome-level R based on tropical ecozones = 0.87–0.94) in the actual vegetation. Increased correlations are not only the effects of land cover change. We additionally identify land management impacts in closed forests, which cause CS reductions. Our large-scale assessment of the TC-CS relationship can inform upcoming remote sensing efforts to map ecosystem structure in high spatio-temporal detail and highlights the need for an explicit focus on land management impacts in the tropics.


2021 ◽  
Author(s):  
Gabriel Bromley ◽  
Andreas F. Prein ◽  
Shannon E. Albeke ◽  
Paul C. Stoy

Abstract Land management strategies can moderate or intensify the impacts of a warming atmosphere. Since the early 1980s, nearly 116,000 km2 of crop land that was once held in fallow during the summer is now planted in the northern North American Great Plains. To simulate the impacts of this substantial land cover change on regional climate processes, convection-permitting model experiments using the Weather Research and Forecasting (WRF) model were performed to simulate modern and historical amounts of summer fallow, and were extensively validated using multiple observational data products as well as eddy covariance tower observations. Results of these simulations show that the transition from summer fallow to modern land cover lead to ~1.5 °C cooler temperatures and decreased vapor pressure deficit by ~0.15 kPa during the growing season, which is consistent with observed cooling trends. The cooler and wetter land surface with vegetation leads to a shallower planetary boundary layer and lower lifted condensation level, creating conditions more conducive to convective cloud formation and precipitation. Our model simulations however show little widespread evidence of land surface changes effects on precipitation. The observed precipitation increase in this region is more likely related to increased moisture transport by way of the Great Plains Low Level Jet as suggested by the ERA5 reanalysis. Our results demonstrate that land cover change is consistent with observed regional cooling in the northern North American Great Plains but changes in precipitation cannot be explained by land management alone.


2001 ◽  
Vol 44 (3) ◽  
pp. 110
Author(s):  
William G. Moseley ◽  
Kathleen M. Baker

2019 ◽  
Author(s):  
Abreham Berta Aneseyee

Abstract Background: Information on soil loss and sediment export is essential to identify hotspots of soil erosion for conservation interventions in a given watershed. This study aims at investigating the dynamic of soil loss and sediment export associated with land use/land cover change and identifies soil loss hotspot areas in Winike watershed of Omo-gibe basin of Ethiopia. Spatial data collected from satellite images, topographic maps, meteorological and soil data were analyzed. Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) of sediment delivery ratio (SDR) model was used based on analysis of land use/land cover maps and RUSLE factors. Result: The results showed that total soil loss increased from 774.86 thousand tons in 1988 to 951.21 thousand tons in 2018 while the corresponding sediment export increased by 3.85 thousand tons in the same period. These were subsequently investigated in each land-use type. Cultivated fields generated the highest soil erosion rate, which increased by 10.02 t/ha/year in 1988 to 43.48 t/ha/year in 2018. This corresponds with the expansion of the cultivated area that increased from 44.95 thousand ha in 1988 to 59.79 thousand ha in 2018. This is logical as the correlation between soil loss and sediment delivery and expansion of cultivated area is highly significant (p<0.01). Sub-watershed six (SW-6) generated the highest soil loss (62.77 t/ha/year) and sediment export 16.69 t/ha/year, followed by Sub-watershed ten (SW-10) that are situated in the upland plateau. Conversely, the lower reaches of the watershed are under dense vegetation cover and experiencing less erosion. Conclusion: Overall, the changes in land use/land cover affect significantly the soil erosion and sediment export dynamism. This research is used to identify an area to prioritize the watershed for immediate management practices. Thus, land use policy measures need to be enforced to protect the hydropower generation dams at downstream and the ecosystem at the watershed.


Land ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 33 ◽  
Author(s):  
Zahn Münch ◽  
Lesley Gibson ◽  
Anthony Palmer

This paper explores the relationship between land cover change and albedo, recognized as a regulating ecosystems service. Trends and relationships between land cover change and surface albedo were quantified to characterise catchment water and carbon fluxes, through respectively evapotranspiration (ET) and net primary production (NPP). Moderate resolution imaging spectroradiometer (MODIS) and Landsat satellite data were used to describe trends at catchment and land cover change trajectory level. Peak season albedo was computed to reduce seasonal effects. Different trends were found depending on catchment land management practices, and satellite data used. Although not statistically significant, albedo, NPP, ET and normalised difference vegetation index (NDVI) were all correlated with rainfall. In both catchments, NPP, ET and NDVI showed a weak negative trend, while albedo showed a weak positive trend. Modelled land cover change was used to calculate future carbon storage and water use, with a decrease in catchment carbon storage and water use computed. Grassland, a dominant dormant land cover class, was targeted for land cover change by woody encroachment and afforestation, causing a decrease in albedo, while urbanisation and cultivation caused an increase in albedo. Land cover map error of fragmented transition classes and the mixed pixel effect, affected results, suggesting use of higher-resolution imagery for NPP and ET and albedo as a proxy for land cover.


Sign in / Sign up

Export Citation Format

Share Document