Study on the Parametric Optimization for a Parallel Hybrid Electric Vehicle Power Train

Author(s):  
Liang Chu ◽  
Youde Li ◽  
Qingnian Wang
2012 ◽  
Vol 260-261 ◽  
pp. 331-336
Author(s):  
Zhen Tong Liu ◽  
Hong Wen He ◽  
Wei Qing Li

Power train of hybrid electric vehicle (HEV) equipped with automated mechanical transmission (AMT) is made up of engine, electric motor, batteries and propulsion system. Shift schedule can’t be worked out with the same way of conventional AMT vehicle. Based on the optimal torque distribution strategy and analysis of the driving efficiency for parallel hybrid electric vehicle (PHEV), a new economy shift schedule for PHEVs equipped with AMT is proposed to maximize the driving efficiency. The MATLAB/CRUISE co-simulation results show that the proposed shift schedule can more efficiently improve the fuel economy performance.


2011 ◽  
Vol 228-229 ◽  
pp. 951-956 ◽  
Author(s):  
Yun Bing Yan ◽  
Fu Wu Yan ◽  
Chang Qing Du

It is necessary for Parallel Hybrid Electric Vehicle (PHEV) to distribute energy between engine and motor and to control state-switch during work. Aimed at keeping the total torque unchanging under state-switch, the dynamic torque control algorithm is put forward, which can be expressed as motor torque compensation for engine after torque pre-distribution, engine speed regulation and dynamic engine torque estimation. Taking Matlab as the platform, the vehicle control simulation model is built, based on which the fundamental control algorithm is verified by simulation testing. The results demonstrate that the dynamic control algorithm can effectively dampen torque fluctuations and ensures power transfer smoothly under various state-switches.


Sign in / Sign up

Export Citation Format

Share Document