Technological Comparison for Dual Phase and Advanced High Strength Low Alloy Steels Regarding Weldability and Mechanical Properties

2014 ◽  
Author(s):  
Andre Sereno Lopes ◽  
Marco Colosio ◽  
Jose Castillo
Author(s):  
L.J. Chen ◽  
H.C. Cheng ◽  
J.R. Gong ◽  
J.G. Yang

For fuel savings as well as energy and resource requirement, high strength low alloy steels (HSLA) are of particular interest to automobile industry because of the potential weight reduction which can be achieved by using thinner section of these steels to carry the same load and thus to improve the fuel mileage. Dual phase treatment has been utilized to obtain superior strength and ductility combinations compared to the HSLA of identical composition. Recently, cooling rate following heat treatment was found to be important to the tensile properties of the dual phase steels. In this paper, we report the results of the investigation of cooling rate on the microstructures and mechanical properties of several vanadium HSLA steels.The steels with composition (in weight percent) listed below were supplied by China Steel Corporation: 1. low V steel (0.11C, 0.65Si, 1.63Mn, 0.015P, 0.008S, 0.084Aℓ, 0.004V), 2. 0.059V steel (0.13C, 0.62S1, 1.59Mn, 0.012P, 0.008S, 0.065Aℓ, 0.059V), 3. 0.10V steel (0.11C, 0.58Si, 1.58Mn, 0.017P, 0.008S, 0.068Aℓ, 0.10V).


Author(s):  
Akihide Nagao ◽  
Nobuyuki Ishikawa ◽  
Toshio Takano

Cr-Mo and Ni-Cr-Mo high-strength low-alloy steels are candidate materials for the storage of high-pressure hydrogen gas. Forging materials of these steels have been used for such an environment, while there has been a strong demand for a higher performance material with high resistance to hydrogen embrittlement at lower cost. Thus, mechanical properties of Cr-Mo and Ni-Cr-Mo steels made of quenched and tempered seamless pipes in high-pressure hydrogen gas up to 105 MPa were examined in this study. The mechanical properties were deteriorated in the presence of hydrogen that appeared in reduction in local elongation, decrease in fracture toughness and accelerated fatigue-crack growth rate, although the presence of hydrogen did not affect yield and ultimate tensile strengths and made little difference to the fatigue endurance limit. It is proposed that pressure vessels for the storage of gaseous hydrogen made of these seamless line pipe steels can be designed.


Metallurgist ◽  
2016 ◽  
Vol 60 (7-8) ◽  
pp. 888-895 ◽  
Author(s):  
Chengyang Hu ◽  
Kaiming Wu ◽  
A. Trotsan ◽  
Yu Li ◽  
O. Isayev ◽  
...  

2020 ◽  
pp. 3-13
Author(s):  
S.A. Krylov ◽  
◽  
A.A. Makarov ◽  
M.A. Druzhnov ◽  
◽  
...  

In continuation of joint work of FSUE «VIAM» and IMET RAN named after Baikov, in the field of obtaining low-alloy steels with increased mechanical properties with a super-equilibrium nitrogen content, the mechanical properties, structure, and chemical composition of the obtained steel were studied. It is shown that steel 10KH3A with a super-equilibrium nitrogen content (up to 0,2) electroslag remelting under pressure DESHP-0,1 (FSUE «VIAM») provides a high level of properties (ultimate strength 1670 MPa) while maintaining high mechanical characteristics (elongation 10%, constriction 50%).


2020 ◽  
Vol 1007 ◽  
pp. 41-46
Author(s):  
Ning Li ◽  
Wilasinee Kingkam ◽  
Zi Ming Bao ◽  
Ren Heng Han ◽  
Yao Huang ◽  
...  

In this study, the two types of high-strength low-alloy steels were melted and cast in a vacuum induction furnace. Phase transition temperature of HSLA steel was calculated by JMatPro software. The calculation results show that the two different types of HSLA steels which have equal phase proportions of ferrite and austenite at a temperature of approximately 820 and 800 °C in HSLA-I and HSLA-II, respectively. In addition, the effect of chemical composition on the microstructure and mechanical properties of steels were studied. The results indicate that the ultimate tensile stress value of HSLA-II samples was greater than the HSLA-I samples by about 35%, and the yield stress and breaking strength value of HSLA-II were higher than HSLA-I as well.


Sign in / Sign up

Export Citation Format

Share Document