Combustion and Emissions Characteristics of Dual Fuel Premixed Charge Compression Ignition with Direct Injection of Synthetic FT Kerosene Produced from Natural Gas and Port Fuel Injection of n-Butanol

Author(s):  
Valentin Soloiu ◽  
Martin Muinos ◽  
Spencer Harp ◽  
Tyler Naes ◽  
Remi Gaubert
Energy ◽  
2020 ◽  
Vol 197 ◽  
pp. 117173 ◽  
Author(s):  
Jeongwoo Lee ◽  
Cheolwoong Park ◽  
Jongwon Bae ◽  
Yongrae Kim ◽  
Sunyoup Lee ◽  
...  

2013 ◽  
Vol 388 ◽  
pp. 217-222
Author(s):  
Mohamed Mustafa Ali ◽  
Sabir Mohamed Salih

Compression Ignition Diesel Engine use Diesel as conventional fuel. This has proven to be the most economical source of prime mover in medium and heavy duty loads for both stationary and mobile applications. Performance enhancements have been implemented to optimize fuel consumption and increase thermal efficiency as well as lowering exhaust emissions on these engines. Recently dual fueling of Diesel engines has been found one of the means to achieve these goals. Different types of fuels are tried to displace some of the diesel fuel consumption. This study is made to identify the most favorable conditions for dual fuel mode of operation using Diesel as main fuel and Gasoline as a combustion improver. A single cylinder naturally aspirated air cooled 0.4 liter direct injection diesel engine is used. Diesel is injected by the normal fuel injection system, while Gasoline is carbureted with air using a simple single jet carburetor mounted at the air intake. The engine has been operated at constant speed of 3000 rpm and the load was varied. Different Gasoline to air mixture strengths investigated, and diesel injection timing is also varied. The optimum setting of the engine has been defined which increased the thermal efficiency, reduced the NOx % and HC%.


2016 ◽  
Vol 9 (2) ◽  
pp. 1130-1142 ◽  
Author(s):  
James Sevik ◽  
Michael Pamminger ◽  
Thomas Wallner ◽  
Riccardo Scarcelli ◽  
Ronald Reese ◽  
...  

2005 ◽  
Vol 6 (5) ◽  
pp. 443-451 ◽  
Author(s):  
T Ishiyama ◽  
H Kawanabe ◽  
K Ohashi ◽  
M Shioji ◽  
S Nakai

In order to extend the available load range and obtain higher thermal efficiency in natural gas premixed charge compression ignition (PCCI) engines, a strategy for controlling direct injection combustion is discussed. Experimental results from single-cylinder engine tests demonstrate the possibility to extend load range by direct fuel injection. Reduced nozzle orifice size and reduced injection angle provide higher combustion efficiency; however, this promotes the tendency to knock because of the formation of a locally rich mixture. Arising from discussions based on prediction by computational fluid dynamics (CFD) code, considering mixture heterogeneity, it is suggested that controlling probability density functions (PDFs) of fuel concentration could be a means to control the rate of pressure rise. Restricted air utilization is useful to activate combustion at low overall equivalence ratios; on the other hand, full utilization of in-cylinder air and formation of a quantity of lean mixture can provide mild combustion.


Author(s):  
Michael Pamminger ◽  
Thomas Wallner ◽  
James Sevik ◽  
Riccardo Scarcelli ◽  
Carrie Hall ◽  
...  

The need to further reduce fuel consumption and decrease the output of emissions — in order to be within future emissions legislation — is still an ongoing effort for the development of internal combustion engines. Natural gas is a fossil fuel which is comprised mostly of methane and makes it very attractive for use in internal combustion engines because of its higher knock resistance and higher molar hydrogen-to-carbon ratio compared to gasoline. The current paper compares the combustion and emissions behavior of the test engine being operated on either a representative U.S. market gasoline or natural gas. Moreover, specific in-cylinder blend ratios with gasoline and natural gas were also investigated at part-load and wide open throttle conditions. The dilution tolerance for part-load operation was investigated by adding cooled exhaust gas recirculation. The engine used for these investigations was a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Gasoline was injected into the intake port; natural gas was injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Injecting natural gas directly into the cylinder reduced both ignition delay and combustion duration of the combustion process compared to the injection of gasoline into the intake port. Injecting natural gas and gasoline simultaneously resulted in a higher dilution tolerance compared to operation on one of the fuels alone. Significantly higher net indicated mean effective pressure and indicated thermal efficiency were achieved when natural gas was directly injected after intake valve closing at wide open throttle, compared to an injection while the intake valves were still open. In general it was shown that the blend ratio and the start of injection need to be varied depending on load and dilution level in order to operate the engine with the highest efficiency or highest load.


Author(s):  
Reed Hanson ◽  
Andrew Ickes ◽  
Thomas Wallner

Dual-fuel combustion using port-injection of low reactivity fuel combined with direct injection of a higher reactivity fuel, otherwise known as Reactivity Controlled Compression Ignition (RCCI), has been shown as a method to achieve low-temperature combustion with moderate peak pressure rise rates, low engine-out soot and NOx emissions, and high indicated thermal efficiency. A key requirement for extending to high-load operation is moderating the reactivity of the premixed charge prior to the diesel injection. One way to accomplish this is to use a very low reactivity fuel such as natural gas. In this work, experimental testing was conducted on a 13L multi-cylinder heavy-duty diesel engine modified to operate using RCCI combustion with port injection of natural gas and direct injection of diesel fuel. Engine testing was conducted at an engine speed of 1200 RPM over a wide variety of loads and injection conditions. The impact on dual-fuel engine performance and emissions with respect to varying the fuel injection parameters is quantified within this study. The injection strategies used in the work were found to affect the combustion process in similar ways to both conventional diesel combustion and RCCI combustion for phasing control and emissions performance. As the load is increased, the port fuel injection quantity was reduced to keep peak cylinder pressure and maximum pressure rise rate under the imposed limits. Overall, the peak load using the new injection strategy was shown to reach 22 bar BMEP with a peak brake thermal efficiency of 47.6%.


2021 ◽  
pp. 146808742110069
Author(s):  
Chloé Lerin ◽  
K Dean Edwards ◽  
Scott J Curran ◽  
Eric J Nafziger ◽  
Melanie Moses-DeBusk ◽  
...  

In support of the Daimler SuperTruck I team’s 55% brake thermal efficiency (BTE) pathway goal, researchers at Oak Ridge National Laboratory performed an experimental investigation of the potential efficiency and emissions benefits of dual-fuel advanced combustion approaches on a modified heavy-duty 15-L Detroit™ DD15 engine. For this work, a natural gas port fuel injection system with an independent injection control for each cylinder was added to the DD15 engine. For the dual-fuel strategies investigated, 65%–90% of the total fuel energy was supplied through the added port fuel injection natural gas (NG) fueling system. The remaining fuel energy was supplied by one or more direct injections of diesel fuel using the production high pressure diesel fueling system. The production DD15 air handling system and combustion geometry were unmodified for this study. Efficiency and emissions with dual-fuel strategies including both low temperature combustion (LTC) and non-LTC approaches such as dual fuel direct-injection were investigated along with control authority over combustion phasing. Parametric studies of dual-fuel NG/diesel advanced combustion were conducted in order to experimentally investigate the potential of high-efficiency, dual-fuel combustion strategies to improve BTE in a multi-cylinder engine, understand the potential reductions in engine-out emissions, and characterize the range of combustion phasing controllability. Characterization of mode transitions from mixing-controlled diesel pilot ignition to kinetically controlled ignition is presented. Key findings from this study included a reproducible demonstration of BTE approaching 48% at up to a 13-bar brake mean effective pressure with significant reductions in engine-out NOx and soot emissions. Additional results from investigating load transients in dual-fuel mode and initial characterization of particle size distribution during dual-fuel operation are presented.


Sign in / Sign up

Export Citation Format

Share Document