Volume 1: Large Bore Engines; Fuels; Advanced Combustion
Latest Publications


TOTAL DOCUMENTS

44
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791857274

Author(s):  
Valentin Soloiu ◽  
Martin Muiños ◽  
Tyler Naes ◽  
Spencer Harp ◽  
Marcis Jansons

In this study, the combustion and emissions characteristics of Reactivity Controlled Compression Ignition (RCCI) obtained by direct injection (DI) of S8 and port fuel injection (PFI) of n-butanol were compared with RCCI of ultra-low sulfur diesel #2 (ULSD#2) and PFI of n-butanol at 6 bar indicated mean effective pressure (IMEP) and 1500 rpm. S8 is a synthetic paraffinic kerosene (C6–C18) developed by Syntroleum and is derived from natural gas. S8 is a Fischer-Tropsch fuel that contains a low aromatic percentage (0.5 vol. %) and has a cetane number of 63 versus 47 of ULSD#2. Baselines of DI conventional diesel combustion (CDC), with 100% ULSD#2 and also DI of S8 were conducted. For both RCCI cases, the mass ratio of DI to PFI was set at 1:1. The ignition delay for the ULSD#2 baseline was found to be 10.9 CAD (1.21 ms) and for S8 was shorter at 10.1 CAD (1.12 ms). In RCCI, the premixed charge combustion has been split into two regions of high temperature heat release, an early one BTDC from ignition of ULSD#2 or S8, and a second stage, ATDC from n-butanol combustion. RCCI with n-butanol increased the NOx because the n-butanol contains 21% oxygen, while S8 alone produced 30% less NOx emissions when compared to the ULSD#2 baseline. The RCCI reduced soot by 80–90% (more efficient for S8). However, S8 alone showed a considerable increase in soot emissions compared with ULSD#2. The indicated thermal efficiency was the highest for the ULSD#2 and S8 baseline at 44%. The RCCI strategies showed a decrease in indicated thermal efficiency at 40% ULSD#2-RCCI and 42% and for S8-RCCI, respectively. S8 as a single fuel proved to be a very capable alternative to ULSD#2 in terms of combustion performance nevertheless, exhibited higher soot emissions that have been mitigated with the RCCI strategy without penalty in engine performance.


Author(s):  
Hanyang Zhuang ◽  
David L. S. Hung ◽  
Jie Yang ◽  
Shaoxiong Tian

Advanced powertrain technologies have improved engine performance with higher power output, lower exhaust emission, and better controllability. Chief among them is the development of spark-ignition direct-injection (SIDI) engines in which the in-cylinder processes control the air flow motion, fuel-air mixture formation, combustion, and soot formation. Specifically, intake air with strong swirl motion is usually introduced to form a directional in-cylinder flow field. This approach improves the mixing process of air and fuel as well as the propagation of flame. In this study, the effect of intake air swirl on in-cylinder flow characteristics was experimentally investigated. High speed particle image velocimetry (PIV) was conducted in an optical SIDI engine to record the flow field on a swirl plane. The intake air swirl motion was achieved by adjusting the opening of a swirl ratio control valve which was installed in one of the two intake ports in the optical engine. Ten opening angles of the swirl ratio control valve were adjusted to produce an intake swirl ratio from 0.55 to 5.68. The flow structures at the same crank angle degree, but under different swirl ratio, were compared and analyzed using proper orthogonal decomposition (POD). The flow dominant structures and variation structures were interpreted by different POD modes. The first POD mode captured the most dominant flow field structure characteristics; the corresponding mode coefficients showed good linearity with the measured swirl ratio at the compression stroke when the flow was swirling and steady. During the intake stroke, strong intake air motion took place, and the structures and coefficients of the first modes varied along different swirl ratio. These modes captured the flow properties affected by the intake swirl motion. Meanwhile, the second and higher modes captured the variation feature of the flow at various crank angle degrees. In summary, this paper demonstrated a promising approach of using POD to interpret the effectiveness of swirl control valve on in-cylinder swirl flow characteristics, providing better understanding for engine intake system design and optimization.


Author(s):  
Fredrik Herland Andersen ◽  
Stefan Mayer

Large commercial ships such as container vessels and bulk carriers are propelled by low-speed, uniflow scavenged two-stroke diesel engines. The integral in-cylinder process in this type of engine is the scavenging process, where the burned gas from the combustion process is evacuated through the exhaust valve and replaced with fresh air for the subsequent compression stroke. The scavenging air enters the cylinder via inlet ports which are uncovered by the piston at bottom dead center (BDC). The exhaust gas is then displaced by the fresh air. The scavenging ports are angled to introduce a swirling component to the flow. The in-cylinder swirl is beneficial for air-fuel mixture, cooling of the cylinder liner and minimizing dead zones where pockets of exhaust gas are trapped. However, a known characteristic of swirling flows is an adverse pressure gradient in the center of the flow, which might lead to a local deficit in axial velocity and the formation of central recirculation zones, known as vortex breakdown. This paper will present a CFD analysis of the scavenging process in a MAN B&W two-stroke diesel engine. The study include a parameter sweep where the operating conditions such as air amount, port timing and scavenging pressure are varied. The CFD model comprise the full geometry from scavenge receiver to exhaust receiver. Asymmetric inlet and outlet conditions is included as well as the dynamics of a moving piston and valve. Time resolved boundary conditions corresponding to measurements from an operating, full scale production, engine as well as realistic initial conditions are used in the simulations. The CFD model provides a detailed description of the in-cylinder flow from exhaust valve opening (EVO) to exhaust valve closing (EVC). The study reveals a close coupling between the volume flow (delivery ratio) and the in-cylinder bulk purity of air which appears to be independent of operating conditions, rpm, scavenge air pressure, BMEP etc. The bulk purity of air in the cylinder shows good agreement with a simple theoretical perfect displacement model.


Author(s):  
Reed Hanson ◽  
Rolf Reitz

Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. The current study investigates RCCI and conventional diesel combustion (CDC) operation in a light-duty multi-cylinder engine using a transient capable engine test cell. The main focus of the work uses engine experiments to investigate methods which can improve low-load RCCI operation. The first set of experiments investigated RCCI operation during cold start conditions. The next set of tests investigated combustion mode switching between RCCI and CDC. During the cold start tests, RCCI performance and emissions were measured over a range of engine coolant temperatures from 48 to 85°C. A combination of open and closed loop controls enabled RCCI to operate at a 1,500 rpm, 1 bar BMEP operating point over this range of coolant temperatures. At a similar operating condition, i.e. 1,500 rpm, 2 bar BMEP, the engine was instantaneously switched between CDC and RCCI combustion using the same open and closed loop controls as the cold start testing. During the mode switch tests, emissions and performance were measured with high speed sampling equipment. The tests revealed that it was possible to operate RCCI down to 48°C with simple open and closed loop controls with emissions and efficiency similar to the warm steady-state values. Next, the mode switching tests were successful in switching combustion modes with minimal deviations in emissions and performance in either mode at steady-state.


Author(s):  
Wei Fang ◽  
David B. Kittelson ◽  
William F. Northrop

Dual-fuel reactivity-controlled compression ignition (RCCI) combustion can yield high thermal efficiency and simultaneously low NOx and soot emissions. Although soot emissions from RCCI is very low, hydrocarbon emissions are high, potentially resulting in higher than desired total particulate matter (PM) mass and number caused by semi-volatile species converting the particle phase upon primary dilution in the exhaust plume. Such high organic fraction PM is known to be highly sensitive to the dilution conditions used when collecting samples on a filter or when measuring particle number using particle sizing instruments. In this study, PM emissions from a modified single-cylinder diesel engine operating in RCCI and conventional diesel combustion modes were investigated under different dilution conditions. To investigate the effect of the fumigated fuel on the PM emissions, 150 proof hydrous ethanol and gasoline were used as low reactivity fuels to study the relative contribution of fumigant versus directly injected fuel on the PM emissions. Our study found that PM from RCCI combustion is more sensitive to the variation of dilution conditions than PM from single fuel conventional diesel combustion. RCCI PM primarily consisted of semi-volatile organic compounds and a smaller amount of solid carbonaceous particles. The fumigated fuel had a significant effect on the PM emissions characteristics for RCCI combustion. Hydrous ethanol fueled RCCI PM contained a larger fraction of volatile materials and were more sensitive to the variation of dilution conditions compared to the gasoline fueled RCCI mode.


Author(s):  
Marko Jeftić ◽  
Ming Zheng

Enhanced premixed combustion of neat butanol in a compression ignition engine can have challenges with regards to the peak pressure rise rate and the peak in-cylinder pressure. It was proposed to utilize a butanol post injection to reduce the peak pressure rise rate and the peak in-cylinder pressure while maintaining a constant engine load. Post injection timing and duration sweeps were carried out with neat n-butanol in a compression ignition engine. The post injection timing sweep results indicated that the use of an early butanol post injection reduced the peak pressure rise rate and the peak in-cylinder pressure and it was observed that there was an optimal post injection timing range for the maximum reduction of these parameters. The results also showed that an early post injection of butanol increased the nitrogen oxide emissions and an FTIR analysis revealed that late post injections increased the emissions of unburned butanol. The post injection duration sweep indicated that the peak pressure rise rate was significantly reduced by increasing the post injection duration at constant load conditions. There was also a reduction in the peak in-cylinder pressure. Measurements with a hydrogen mass spectrometer showed that there was an increased presence of hydrogen in the exhaust gas when the post injection duration was increased but the total yield of hydrogen was relatively low. It was observed that the coefficient of variation for the indicated mean effective pressure was significantly increased and that the indicated thermal efficiency was reduced when the post injection duration was increased. The results also showed that there were increased nitrogen oxide, carbon monoxide, and total hydrocarbon emissions for larger post injections. Although the use of a post injection resulted in emission and thermal efficiency penalties at medium load conditions, the results demonstrated that the post injection strategy successfully reduced the peak pressure rise rate and this characteristic can be potentially useful for higher load applications where the peak pressure rise rate is of greater concern.


Author(s):  
Sameera Wijeyakulasuriya ◽  
Ravichandra S. Jupudi ◽  
Shawn Givler ◽  
Roy J. Primus ◽  
Adam E. Klingbeil ◽  
...  

High fidelity, three-dimensional CFD was used to model the flow, fuel injection, combustion, and emissions in a large bore medium speed diesel engine with different levels of natural gas substitution. Detailed chemical kinetics was used to model the complex combustion behavior of the premixed natural gas, ignited via a diesel spray. The numerical predictions were compared against measured multiple cycle pressure data, to understand the possible factors affecting cyclic variation in experimental data. Under conditions with high natural gas substitution rates, diesel was injected much earlier than firing-TDC. This additional mixing time allowed the active radicals from diesel dissociation to initiate combustion from the cylinder wall and propagate inwards. 0%, 60%, and 93% natural gas substitution rates (by energy) were tested in this study to develop computational capabilities needed to accurately model and understand the underlying physics. Several innovative computational methods such as adaptive mesh refinement (which automatically refines and coarsens the mesh based on the existing solution parameters), and multi-zoning (which groups chemically similar cells together to reduce combustion calculation time) were utilized to obtain accurate predictions at a lower computational cost. Important engine emissions such as NOx, CO, unburnt HC, and soot were predicted numerically and compared against measured engine data.


Author(s):  
Daniel G. Van Alstine ◽  
David T. Montgomery ◽  
Timothy J. Callahan ◽  
Radu C. Florea

Low natural gas prices have made the fuel an attractive alternative to diesel and other common fuels, particularly in applications that consume large quantities of fuel. The North American rail industry is examining the use of locomotives powered by dual fuel engines to realize savings in fuel costs. These dual fuel engines can substitute a large portion of the diesel fuel with natural gas that is premixed with the intake air. Engine knock in traditional premixed spark-ignited combustion is undesirable but well characterized by the Methane Number index, which quantifies the propensity of a gaseous fuel to autoignite after a period of time at high temperature. Originally developed for spark-ignited engines, the ability of the methane number index to predict a fuel’s “knock” behavior in dual fuel combustion is not as fully understood. The objective of this effort is to evaluate the ability of an existing methane number algorithm to predict rapid combustion in a dual fuel engine. Sets of specialized natural gas fuel blends that, according to the MWM methane number algorithm, should have similar knock characteristics are tested in a dual fuel engine and induced to experience rapid combustion. Test results and CFD analysis reveal that rapid or aggressive combustion rates happen late in the dual fuel combustion event with this engine hardware configuration. The transition from normal combustion to late rapid combustion is characterized by changes in the heat release rate profiles. In this study, the transition is also represented by a shift in the crank angle location of the combustion’s peak heat release rate. For fuels of similar methane number that should exhibit similar knock behavior, these transitions occur at significantly different relative air-fuel ratios, demonstrating that the existing MWM methane number algorithm, while excellent for spark-ignited engines, does not fully predict the propensity for rapid combustion to occur in a dual fuel engine within the scope of this study. This indicates that physical and chemical phenomena present in rapid or aggressive dual fuel combustion processes may differ from those in knocking spark-ignited combustion. In its current form a methane number algorithm can be used to conservatively rate dual fuel engines. It is possible that derivation of a new reactivity index that better predicts rapid combustion behavior of the gaseous fuel in dual fuel combustion would allow ratings to be less conservative.


Author(s):  
Hiroki Tanaka ◽  
Kazunobu Kobayashi ◽  
Takahiro Sako ◽  
Kazunari Kuwahara ◽  
Hiroshi Kawanabe ◽  
...  

The factors affecting knock resistance of fuels, including hydrogen (H2), ethane (C2H6), propane (C3H8), normal butane (n-C4H10), and iso-butane (i-C4H10), were determined using modeling and engine operation tests with spark-ignition gas engines. The results of zero-dimensional detailed chemical kinetic computations indicated that H2 had the longest ignition delay time of these gaseous fuels. Thus, H2 possessed the lowest ignitability. Results of engine operation tests indicated that H2 was the fuel most likely to result in knocking. The use of H2 as the fuel produced a temperature profile of the unburned gas compressed by the piston and flame front that was higher than that of the other fuels due to the high specific heat ratio and burning velocity of H2. The relation between knock resistance and secondary fuel ratio in methane-based fuel blends also was investigated using methane (CH4) as the primary component, and H2, C2H6, C3H8, n-C4H10, or i-C4H10 as the secondary components. When the secondary fuel ratio was small, the CH4/H2 blend possessed the lowest knocking tendency. But as the secondary fuel ratio increased, the CH4/H2 mixture possessed a greater tendency to knock than did CH4/C2H6 due to the high specific heat ratio and burning velocity of H2. These results indicate that the knocking that can occur with gaseous fuels is not only dependent on the ignitability of the fuel, but it also the specific heat ratio and burning velocity.


Sign in / Sign up

Export Citation Format

Share Document