Study on a Method for Evaluating the Safety of the Braking Control Algorithm for Automated Driving System When Following

2019 ◽  
Author(s):  
Masato Gokan ◽  
Nobuhisa Tanaka ◽  
Yoshimi Furukawa ◽  
Tunetoshi Iwase ◽  
Taichi Hirowatari
2021 ◽  
Vol 11 (1) ◽  
pp. 845-852
Author(s):  
Aleksandra Rodak ◽  
Paweł Budziszewski ◽  
Małgorzata Pędzierska ◽  
Mikołaj Kruszewski

Abstract In L3–L4 vehicles, driving task is performed primarily by automated driving system (ADS). Automation mode permits to engage in non-driving-related tasks; however, it necessitates continuous vigilance and attention. Although the driver may be distracted, a request to intervene may suddenly occur, requiring immediate and appropriate response to driving conditions. To increase safety, automated vehicles should be equipped with a Driver Intervention Performance Assessment module (DIPA), ensuring that the driver is able to take the control of the vehicle and maintain it safely. Otherwise, ADS should regain control from the driver and perform a minimal risk manoeuvre. The paper explains the essence of DIPA, indicates possible measures, and describes a concept of DIPA framework being developed in the project.


2021 ◽  
Vol 129 ◽  
pp. 103271
Author(s):  
Zhigang Xu ◽  
Zijun Jiang ◽  
Guanqun Wang ◽  
Runmin Wang ◽  
Tingting Li ◽  
...  

Author(s):  
Travis Terry ◽  
Tammy E. Trimble ◽  
Mindy Buchanan-King ◽  
Myra Blanco ◽  
Vikki L. Fitchett ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Frederik Naujoks ◽  
Yannick Forster ◽  
Katharina Wiedemann ◽  
Alexandra Neukum

During conditionally automated driving (CAD), driving time can be used for non-driving-related tasks (NDRTs). To increase safety and comfort of an automated ride, upcoming automated manoeuvres such as lane changes or speed adaptations may be communicated to the driver. However, as the driver’s primary task consists of performing NDRTs, they might prefer to be informed in a nondistracting way. In this paper, the potential of using speech output to improve human-automation interaction is explored. A sample of 17 participants completed different situations which involved communication between the automation and the driver in a motion-based driving simulator. The Human-Machine Interface (HMI) of the automated driving system consisted of a visual-auditory HMI with either generic auditory feedback (i.e., standard information tones) or additional speech output. The drivers were asked to perform a common NDRT during the drive. Compared to generic auditory output, communicating upcoming automated manoeuvres additionally by speech led to a decrease in self-reported visual workload and decreased monitoring of the visual HMI. However, interruptions of the NDRT were not affected by additional speech output. Participants clearly favoured the HMI with additional speech-based output, demonstrating the potential of speech to enhance usefulness and acceptance of automated vehicles.


2018 ◽  
Vol 166 ◽  
pp. 02002 ◽  
Author(s):  
Jonghyup Lee ◽  
Seibum Choi

While many vehicle control systems focus on vehicle safety and vehicle performance at high speeds, most driving conditions are very low risk situations. In such a driving situation, the ride comfort of the vehicle is the most important performance index of the vehicle. Electro mechanical brake (EMB) and other brake-by-wire (BBW) systems have been actively researched. As a result, braking actuators in vehicles are more freely controllable, and research on improving ride comfort is also possible. In this study, we develop a control algorithm that dramatically improves ride comfort in low risk braking situations. A method for minimizing the inconvenience of a passenger due to a suddenly changing acceleration at the moment when the vehicle is stopped is presented. For this purpose, an acceleration trajectory is generated that minimizes the discomfort index defined by the change in acceleration, jerk. A controller is also designed to track this trajectory. The algorithm that updates the trajectory is designed considering the error due to the phase lag occurring in the controller and the plant. In order to verify the performance of this controller, simulation verification is completed using a car simulator, Carsim. As a result, it is confirmed that the ride comfort is dramatically improved.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1829
Author(s):  
Minhee Kang ◽  
Jaein Song ◽  
Keeyeon Hwang

Automated Vehicles (AVs) are under development to reduce traffic accidents to a great extent. Therefore, safety will play a pivotal role to determine their social acceptability. Despite the fast development of AVs technologies, related accidents can occur even in an ideal environment. Therefore, measures to prevent traffic accidents in advance are essential. This study implemented a traffic accident context analysis based on the Deep Neural Network (DNNs) technique to design a Preventive Automated Driving System (PADS). The DNN-based analysis reveals that when a traffic accident occurs, the offender’s injury can be predicted with 85% accuracy and the victim’s case with 67%. In addition, to find out factors that decide the degree of injury to the offender and victim, a random forest analysis was implemented. The vehicle type and speed were identified as the most important factors to decide the degree of injury of the offender, while the importance for the victim is ordered by speed, time of day, vehicle type, and day of the week. The PADS proposed in this study is expected not only to contribute to improve the safety of AVs, but to prevent accidents in advance.


Sign in / Sign up

Export Citation Format

Share Document