Vibration Isolation of the Quarter Car Model of Road Vehicle System using Dynamic Vibration Absorber

Author(s):  
Sakshi Sharma ◽  
Rakesh Chandmal Sharma ◽  
Sunil Kumar Sharma ◽  
Neeraj Sharma ◽  
Srihari Palli ◽  
...  

In cases where the natural frequencies of vibrations of a vehicle system are closed to the excitation frequencies from the road surface, dynamic vibration absorber provides the vibration isolation by shifting the resonant frequencies of the system. In the present work, the performance of a dynamic vibration absorber is evaluated with two degrees of freedom quarter car model of a road vehicle system when excited with deterministic inputs. The transmissibility of vibrations from the track to the sprung mass, the transfer function of sprung mass acceleration, the transfer function of suspension deflection and the transfer function of tire deflection is determined.

2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Lahcen Mokni ◽  
Mohamed Belhaq

Previous numerical and experimental works show that time delay technique is efficient to reduce transmissibility of vibration in a single pneumatic chamber by controlling the pressure in the chamber. The present work develops an analytical study to demonstrate the effectiveness of such a technique in reducing transmitted vibrations. A quarter-car model is considered and delayed hysteretic suspension is introduced in the system. Analytical predictions based on perturbation analysis show that a delayed hysteretic suspension enhances vibration isolation comparing to the case where the nonlinear damping is delay-independent.


Author(s):  
A. Narimani ◽  
M. F. Golnaraghi

Semi-active isolators offer significant improvement in performance over passive isolators. These systems benefit from the advantages of active systems with the reliability of the passive systems. In this work we study a vibration isolation system with a magnetorheological (MR) damper. The experimental investigation of the mechanical properties of a commercially available linear MR damper (RD-1005-3) was conducted next. The mathematical Bouc-Wen model was adopted to predict the performance of MR damper. In addition, a modified Bingham model has been developed to characterize the damper behavior more accurately and efficiently. The measured hysteresis characteristics of field-dependent damping forces are compared with the simulation results from the described mathematical models. The accuracy of a damping-force controller using the proposed method is also demonstrated experimentally. Finally, a scaled quarter car model is set up to study the performance of the control strategy. The experimental results show that with the semi-active control the vibration of the quarter car model is well controlled.


2021 ◽  
pp. 107754632110382
Author(s):  
Peng Sui ◽  
Yongjun Shen ◽  
Shaopu Yang ◽  
Junfeng Wang

In the field of dynamics and control, some typical vibration devices, including grounded stiffness, inerter and amplifying mechanism, have good vibration isolation and reduction effects, especially in dynamic vibration absorber (DVA). However, most of the current research studies only focus on the performance of a single device on the system, and those DVAs are gradually becoming difficult to meet the growth of performance demand for vibration control. On the basis of Voigt dynamic vibration absorber, a novel dynamic vibration absorber model based on the combined structure of grounded stiffness, inerter, and amplifying mechanism is presented, and the analytical solution of the optimal design formula is derived. First, the motion differential equation of the system is established, and the normalized amplitude amplification factor of the displacement is calculated. It is found that the system has three fixed points unrelated to the damping ratio. The optimal frequency ratio is obtained based on the fixed-point theory. In order to ensure the stability of the system, it is found that inappropriate inerter coefficient will cause the system instable when screening optimal grounded stiffness ratio. Accordingly, the best working range of inerter is determined. Finally, optimal grounded stiffness ratio and approximate optimal damping ratio are also obtained. The influence of inerter coefficient and magnification ratio on the response of the primary system is analyzed. The correctness of the derived analytical solution is verified by numerical simulation. Compared with other dynamic vibration absorbers, it is verified that presented model has superior vibration absorption performance and provides a theoretical basis for the design of a new type of dynamic vibration absorbers.


2016 ◽  
Vol 28 (16) ◽  
pp. 2239-2254 ◽  
Author(s):  
Fu-Long Xin ◽  
Xian-Xu Bai ◽  
Li-Jun Qian

This article proposes and validates the principle of a new magnetorheological elastomer (MRE) dynamic vibration absorber (DVA) for powertrain mount systems of automobiles. The MRE DVA consists of a vibration absorption unit and a passive vibration isolation unit. The vibration absorption unit composed of a magnetic conductor, a shearing sleeve, a bobbin core, an electromagnetic coil, and a circular cylindrical MRE is utilized to absorb the vibration energy, and the passive vibration isolation unit is used to support the powertrain. The finite element method is employed to validate the electromagnetic circuit of the MRE DVA and obtain the electromagnetic characteristics. The theoretical frequency-shift principle is analyzed via the established constitutive equations of the circular cylindrical MRE In order to demonstrate how the parameters of the MRE influence the vibration attenuation performance, the MRE DVA is applied to a powertrain mount system to replace the conventional passive mount. The frequency-shift property of the vibration absorption unit and the vibration attenuation performance of the MRE DVA on the powertrain mount system are experimentally tested. To validate and improve the vibration attenuation performance for the semi-active powertrain mount systems, an optimal variable step algorithm is proposed for the MRE DVA and numerical experiments are carried out.


2020 ◽  
pp. 107754632094017
Author(s):  
Marcial Baduidana ◽  
Aurelien Kenfack-Jiotsa

This study is concerned with the problem of analysis and optimization of inerter-based systems. A main inerter system is generally composed of an inerter, a spring, and viscous damper. Series – parallel inerter system s and series inerter system s are two commonly used configurations of inerter-based system s . First , in this study , the H∞ optimum parameters of inerter-based isolators are derived to minimize the compliance and mobility transfer function of a single-degree -of-freedom system under a harmonic ground acceleration excitation. Under the optimum tuning condition, it is shown that the proposed inerter-based isolators when compared with the traditional dynamic vibration absorber provide larger suppression of the peak value of the magnitude of compliance and mobility transfer function s of the primary system. For the studied cases, more than 40% and 45% improvement can be attained in terms of minimizing the compliance and mobility transfer function s , respectively, as compared with the traditional dynamic vibration absorber for the series – parallel inerter system and 15% and 11% improvement can be attained respectively , for the series inerter system . Finally, further comparison between the inerter-based isolators and traditional dynamic vibration absorber under white noise excitation also shows that the series – parallel inerter system and series inerter system s are superior to the traditional dynamic vibration absorber . The results of the studied systems show that m ore than 23% and 16% improvement are attained in terms of minimizing the compliance and mobility transfer function s respectively , as compared with the traditional dynamic vibration absorber for the series – parallel inerter system and 26% and 13% improvement can be attained respectively , for the series inerter system . The optimal parameters for different cases are obtained. It is shown that the optimal parameters obtained using the minimized mobility transfer function are smaller than those using the compliance transfer function at all mass ratios or inertance-to-mass ratio. The results of this study can provide theoretical basis for design of the optimal inerter-based isolators in engineering practice.


2016 ◽  
Vol 2016 (0) ◽  
pp. 422
Author(s):  
Syed Mamun R RASID ◽  
Takeshi MIZUNO ◽  
Masaya TAKASAKI ◽  
Yuji ISHINO ◽  
Masayuki HARA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document