scholarly journals Transverse knots and Khovanov homology

2006 ◽  
Vol 13 (4) ◽  
pp. 571-586 ◽  
Author(s):  
Olga Plamenevskaya
2020 ◽  
Vol 2020 (769) ◽  
pp. 87-119
Author(s):  
Sabin Cautis ◽  
Aaron D. Lauda ◽  
Joshua Sussan

AbstractRickard complexes in the context of categorified quantum groups can be used to construct braid group actions. We define and study certain natural deformations of these complexes which we call curved Rickard complexes. One application is to obtain deformations of link homologies which generalize those of Batson–Seed [3] [J. Batson and C. Seed, A link-splitting spectral sequence in Khovanov homology, Duke Math. J. 164 2015, 5, 801–841] and Gorsky–Hogancamp [E. Gorsky and M. Hogancamp, Hilbert schemes and y-ification of Khovanov–Rozansky homology, preprint 2017] to arbitrary representations/partitions. Another is to relate the deformed homology defined algebro-geometrically in [S. Cautis and J. Kamnitzer, Knot homology via derived categories of coherent sheaves IV, colored links, Quantum Topol. 8 2017, 2, 381–411] to categorified quantum groups (this was the original motivation for this paper).


2014 ◽  
Vol 7 (3) ◽  
pp. 817-848 ◽  
Author(s):  
Robert Lipshitz ◽  
Sucharit Sarkar

2018 ◽  
Vol 27 (01) ◽  
pp. 1850003
Author(s):  
Kyungbae Park

Let [Formula: see text] be the positively clasped untwisted Whitehead double of a knot [Formula: see text], and [Formula: see text] be the [Formula: see text] torus knot. We show that [Formula: see text] and [Formula: see text] are linearly independent in the smooth knot concordance group [Formula: see text] for each [Formula: see text]. Further, [Formula: see text] and [Formula: see text] generate a [Formula: see text] summand in the subgroup of [Formula: see text] generated by topologically slice knots. We use the concordance invariant [Formula: see text] of Manolescu and Owens, using Heegaard Floer correction term. Interestingly, these results are not easily shown using other concordance invariants such as the [Formula: see text]-invariant of knot Floer theory and the [Formula: see text]-invariant of Khovanov homology. We also determine the infinity version of the knot Floer complex of [Formula: see text] for any [Formula: see text] generalizing a result for [Formula: see text] of Hedden, Kim and Livingston.


2009 ◽  
Vol 156 (3) ◽  
pp. 533-541 ◽  
Author(s):  
Marko Stošić

2019 ◽  
Vol 26 (5) ◽  
pp. 1281-1290
Author(s):  
John A. Baldwin ◽  
Steven Sivek ◽  
Yi Xie
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document