scholarly journals Effects of caffeoylxanthiazonoside on airway inflammation in an allergic asthma mice model

2021 ◽  
Vol 18 (4) ◽  
pp. 761-766
Author(s):  
Qian Wu ◽  
Hui Wang ◽  
Xiaowen Che ◽  
Wei Wang

Purpose: To investigate the inhibitory effects of caffeoylxanthiazonoside (CYT) on airway inflammation in mice and its mechanism of action. Methods: An allergic asthma mice model was established by intraperitoneal injection and aerosol nebulization with ovalbumin (OVA). After treatment with CYT, the blood and bronchoalveolar lavage fluid (BALF) were collected from the mice. The leukocytes were classified and counted with Giemsa solution. Enzyme-linked immunosorbent assay (ELISA) was used to determine the serum levels of IgE, and IL-4, IL-5, IL-13 and IFN-γ in the BALF of mice. Lung tissues were obtained from the mice and MUC5AC protein expression was measured by western blot. Results: CYT significantly decreased the serum level of IgE in asthmatic mice. Inflammatory cells in BALF of mice were markedly reduced (p < 0.05) by CYT treatment at varying doses (10, 20, and 40 mg/kg). Treatment with CYT also significantly suppressed the cytokines of IL-4, IL-5 and IL-13 and increased the IFN-γ in the BLAF of OVA-induced allergic asthma mice (p < 0.05). Western blot results indicate that CYT treatment significantly decreased the expression of MUC5AC protein in the lung tissues of asthmatic mice. In addition, no significant effects on the body weight of the mice were found after CYT treatment. Conclusion: Caffeoylxanthiazonoside inhibits airway inflammation in allergic asthma mice by altering Th1/Th2 via re-balancing of related cytokines and downregulation of lung MUC5AC protein expression. Therefore, this compound can potentially be developed for the therapeutic management of inflammation in allergic asthma.

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Xin Peng ◽  
Yi Wu ◽  
Xiao Kong ◽  
Yunxiu Chen ◽  
Yonglu Tian ◽  
...  

Our previous study showed that neonatal S. pneumoniae infection aggravated airway inflammation and airway hyperresponsiveness (AHR) in an OVA-induced allergic asthma model. As airway smooth muscle (ASM) plays a pivotal role in AHR development, we aim to investigate the effects of neonatal S. pneumoniae pneumonia on ASM structure and AHR development. Non-lethal neonatal pneumonia was established by intranasally infecting 1-week-old BALB/C mice with the S. pneumoniae strain D39. Five weeks after infection, the lungs were collected to assess the levels of α-SMA and the contractile proteins of ASM. Our results indicate that neonatal S. pneumoniae pneumonia significantly increased adulthood lung α-SMA and SMMHC proteins production and aggravated airway inflammatory cells infiltration and cytokines release. In addition, the neonatal S. pneumoniae pneumonia group had significantly higher Penh values compared to the uninfected controls. These data suggest that neonatal S. pneumoniae pneumonia promoted an aberrant ASM phenotype and AHR development in mice model.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ba-Wool Lee ◽  
Ji-Hye Ha ◽  
Yeongseon Ji ◽  
Seong-Hun Jeong ◽  
Ju-Hong Kim ◽  
...  

Alnus hirsuta (Spach) Rupr. (AH), a member of the Betulaceae family, is widely used in Eastern Asia of as a source of medicinal compounds for the treatment of hemorrhage, diarrhea, and alcoholism. In this study, we investigated the protective effects of a methanolic extract of AH branches against airway inflammation and mucus production in tumor necrosis factor (TNF)-α-stimulated NCI-H292 cells and in an ovalbumin (OVA)-challenged allergic asthma mouse model. Female BALB/c mice were injected with OVA (40 μg) and aluminum hydroxide (2 mg) on days 0 and 14 to induce allergic airway inflammation. The mice were then challenged with 1% OVA from days 21–23. Mice were treated with AH (50 and 100 mg/kg/day; 2% DMSO) or dexamethasone (positive control; 3 mg/kg/day) from days 18–23. AH treatment effectively attenuated airway resistance/hyperresponsiveness and reduced levels of T helper type 2 (Th2) cytokines, eotaxins, and number of inflammatory cells in bronchoalveolar lavage fluid, and immunoglobulin E in serums of OVA-challenged mice. In histological analysis, AH treatment significantly inhibited airway inflammation and mucus production in OVA-challenged mice. AH treatment downregulated the phosphorylation of I kappa B-alpha, p65 nuclear factor-kappa B (p65NF-κB), and mitogen-activated protein kinases with suppression of mucin 5AC (MUC5AC) in lung tissue. Moreover, AH treatment decreased the levels of pro-inflammatory cytokines and Th2 cytokines, as well as MUC5AC expression, and inhibited the phosphorylation of p65NF-κB in TNF-α-stimulated NCI-H292 cells. These results indicate that AH might represent a useful therapeutic agent for the treatment of allergic asthma.


Author(s):  
Hui-Hsien Pan ◽  
Jiunn-Liang Ko ◽  
Chia-Ta Wu ◽  
Hai-Lun Sun ◽  
Yeak-Wun Quek ◽  
...  

<b><i>Background:</i></b> Asthma animal models provide valuable information about the pathogenesis and the treatment of asthma. An ovalbumin (OVA)/complete Freund’s adjuvant (CFA)-sensitized model was developed to induce neutrophil-dominant asthma and to investigate whether fungal immunomodulatory peptide-<i>fve</i> (FIP-<i>fve</i>) could improve asthma features in the OVA/CFA-sensitized model. <b><i>Methods:</i></b> We used female BALB/c mice and sensitized them intraperitoneally with OVA/CFA on days 1, 2, and 3. On days 14, 17, 21, 24, and 27, they were challenged with intranasal OVA. The airway hyper-responsiveness (AHR) was detected by BUXCO, inflammatory cells were stained with Liu’s stain, the cytokines were detected using ELISA, and the airway inflammation was analyzed with hematoxylin and eosin stain. <b><i>Results:</i></b> According to the results, OVA/CFA sensitization could induce AHR, high levels of IgE, and inflammatory cells especially neutrophils infiltration in the lung and airway inflammation. IL-4, IL-5, IL-6, IL-8, IL-10, IL-13, IL-17, IL-25, IL-33, and transforming growth factor-β (TGF-β) increased in the OVA/CFA-sensitized mice. OVA/CFA-sensitized mice treated with FIP-<i>fve</i> not only increased IL-12 and IFN-γ but also decreased IL-4, IL-5, IL-6, IL-8, IL-13, IL-17, IL-25, IL-33, and TGF-β in the bronchoalveolar lavage fluid. Moreover, FIP-<i>fve</i> significantly decreased neutrophil infiltration in the lung. <b><i>Conclusion:</i></b> The OVA/CFA model induced neutrophilic asthma successfully, and FIP-<i>fve</i> improved neutrophil-dominant asthma.


2021 ◽  
Vol 18 (6) ◽  
pp. 1277-1283
Author(s):  
Xinxin Xing ◽  
Hai Wang

Purpose: To investigate the anti-asthmatic effect of laurotetanine on allergic asthma rat model. Methods: Laurotetanine was extracted from the roots of Litsea cubeba (Lour.) Pers. Asthma was induced in rats by ovalbumin injection. Laurotetanine (20, 40, or 60 mg/kg) was administered orally to the rats for 21 days. Inflammatory cells and cytokines released by T-cell subsets Th1 and Th2 in the bronchoalveolar lavage fluid were determined. Serum immunoglobulin E (IgE) and histamine, in addition to expression of mucin 5AC (MUC-5AC), nuclear factor-kappa B (NF-κB), and an inhibitor of NF-κB (IκB) in lung tissues were also evaluated. Results: Laurotetanine treatment (20, 40, 60 mg/kg) significantly reduced inflammatory cells, including eosinophils, neutrophils, lymphocytes, and macrophages in treated rats compared with control animals (p < 0.01). Inflammatory cytokines, viz, interleukin (IL) -4, IL-6, IL-13 were also significantly (p < 0.01) decreased by laurotetanine treatment (20, 40, 60 mg/kg), whereas interferon gamma (IFN-γ) was increased (p < 0.01). Serum IgE and histamine were significantly reduced (p < 0.01) by laurotetanine (20, 40, 60 mg/kg). Furthermore, MUC5AC expression in lung tissues was significantly (p < 0.01) downregulated by laurotetanine (20, 40, and 60 mg/kg, but NF-κB and IκB were significantly (p < 0.01) upregulated by laurotetanine (20, 40, and 60 mg/kg). Conclusion: Laurotetanine exerts an anti-asthmatic effect in rats by inhibition of IgE, histamine, and inflammatory reactions via down-regulating MUC5AC and NF-κB signaling pathways. This finding justifies the need for further development of laurotetanine as a potential anti-asthmatic drug.


2019 ◽  
Vol 317 (1) ◽  
pp. L29-L38 ◽  
Author(s):  
Jie Yu ◽  
Kebin Li ◽  
Jie Xu

We hypothesized that indoor PM2.5 exposure from coal combustion exaggerates airway inflammation in the lung tissue of asthmatic mice induced with ovalbumin (OVA). Forty BALB/c mice, randomly divided into four groups ( n = 10 per group), were intratracheally instilled with normal saline alone, PM2.5 (2.5 mg/ml PM2.5 alone), OVA (15 μg/ml OVA alone), and PM2.5+OVA (2.5 mg/ml PM2.5 and 15 μg/ml OVA), respectively, four times at 2-wk intervals. Daily mean concentration of PM2.5 from indoor coal combustion was 156.95 μg/m3. The highest metal composition in PM2.5 was Zn (34.81 ± 1.8 μg/m3). Exposure to PM2.5+OVA significantly elevated IL-4 and decreased IFN-γ production in mice compared with the control ( P < 0.05). Exposure to PM2.5+OVA showed a significant increase in the protein levels of granulocyte-macrophage colony-stimulating factor and IL-8 and a decrease in the protein level of transforming growth factor-β1 in bronchoalveolar lavage fluid of mice compared with the control ( P < 0.05). The expression of IL-4 mRNA was significantly increased, whereas the expression of IFN-γ mRNA was decreased in lung tissue of the PM2.5+OVA group ( P < 0.05). The expression level of Foxp3 mRNA in the PM2.5+OVA group was significantly lower than that in the control group in lung tissue ( P < 0.05). Treatment with PM2.5+OVA promoted a prominent neutrophil sequestration into the lung parenchyma, goblet cell proliferation, and severe inflammatory cell infiltration in the airways. Exposure to PM2.5 from indoor coal combustion might induce airway inflammatory immune responses and exacerbate peribronchiolar inflammation due to infiltration of inflammatory cells into the airway submucosa and airway structural pathological changes.


2008 ◽  
Vol 76 (6) ◽  
pp. 2352-2361 ◽  
Author(s):  
Anne Rosbottom ◽  
E. Helen Gibney ◽  
Catherine S. Guy ◽  
Anja Kipar ◽  
Robert F. Smith ◽  
...  

ABSTRACT The protozoan parasite Neospora caninum causes fetal death after experimental infection of pregnant cattle in early gestation, but the fetus survives a similar infection in late gestation. An increase in Th1-type cytokines in the placenta in response to the presence of the parasite has been implicated as a contributory factor to fetal death due to immune-mediated pathological alterations. We measured, using real-time reverse transcription-PCR and enzyme-linked immunosorbent assay, the levels of cytokines in the placentas of cattle experimentally infected with N. caninum in early and late gestation. After infection in early gestation, fetal death occurred, and the levels of mRNA of both Th1 and Th2 cytokines, including interleukin-2 (IL-2), gamma interferon (IFN-γ), IL-12p40, tumor necrosis factor alpha (TNF-α), IL-18, IL-10, and IL-4, were significantly (P < 0.01) increased by up to 1,000-fold. There was extensive placental necrosis and a corresponding infiltration of CD4+ T cells and macrophages. IFN-γ protein expression was also highly increased, and a modest increase in transforming growth factor β was detected. A much smaller increase in the same cytokines and IFN-γ protein expression, with minimal placental necrosis and inflammatory infiltration, occurred after N. caninum infection in late gestation when the fetuses survived. Comparison of cytokine mRNA levels in separated maternal and fetal placental tissue that showed maternal tissue was the major source of all cytokine mRNA except for IL-10 and TNF-α, which were similar in both maternal and fetal tissues. These results suggest that the magnitude of the cytokine response correlates with but is not necessarily the cause of fetal death and demonstrate that a polarized Th1 response was not evident in the placentas of N. caninum-infected cattle.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Zhao ◽  
Yihang Li ◽  
Dahong Yao ◽  
Ran Sun ◽  
Shifang Liu ◽  
...  

Background: The prevalence of hyperuricemia is considered high worldwide. Hyperuricemia occurs due to decreased excretion of uric acid, increased synthesis of uric acid, or a combination of both mechanisms. There is growing evidence that hyperuricemia is associated with a decline of renal function.Purpose: This study is aimed at investigating the effects of the novel compound on lowering the serum uric acid level and alleviating renal inflammation induced by high uric acid in hyperuricemic mice.Methods: Hyperuricemic mice model was induced by potassium oxonate and used to evaluate the effects of the novel compound named FxUD. Enzyme-linked immunosorbent assay was used to detect the related biochemical markers. Hematoxylin-eosin (HE) staining was applied to observe pathological changes. The mRNA expression levels were tested by qRT-PCR. The protein levels were determined by Western blot. In parallel, human proximal renal tubular epithelial cells (HK-2) derived from normal kidney was used to further validate the anti-inflammatory effects in vitro.Results: FxUD administration significantly decreased serum uric acid levels, restored the kidney function parameters, and improved the renal pathological injury. Meanwhile, treatment with FxUD effectively inhibited serum and liver xanthine oxidase (XOD) levels. Reversed expression alterations of renal inflammatory cytokines, urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) were observed in hyperuricemic mice. Western blot results illustrated FxUD down-regulated protein levels of inflammasome components. Further studies showed that FxUD inhibited the activation of NF-κB signaling pathway in the kidney of hyperuricemic mice. In parallel, the anti-inflammatory effect of FxUD was also confirmed in HK-2.Conclusion: Our study reveals that FxUD exhibits the anti-hyperuricemic and anti-inflammatory effects through regulating hepatic XOD and renal urate reabsorption transporters, and suppressing NF-κB/NLRP3 pathway in hyperuricemia. The results provide the evidence that FxUD may be potential for the treatment of hyperuricemia with kidney inflammation.


2019 ◽  
Vol 39 (7) ◽  
Author(s):  
Bin Lin ◽  
Bijuan Cai ◽  
Huige Wang

Abstract Honeysuckle has antiviral, antioxidative and anti-inflammatory properties. Allergic rhinitis (AR) is induced by immunoglobulin E (IgE)-mediated inflammatory reaction. Our study investigates whether honeysuckle extract (HE) has therapeutic effect on AR. An AR model of mice was established by ovalbumin (OVA). Hematoxylin–Eosin staining was used to assess nasal mucosa damage. Enzyme-linked immunosorbent assay (ELISA) was performed to determine serum histamine, IgE and interleukin (IL)-2, IL-4, IL-17 and interferon-γ (IFN-γ) from nasal lavage fluid. Western blot was carried out to analyze the protein level from nasal mucosa tissue. We found that HE not only decreased nasal rubbing and sneezing in AR mice, but also reduced AR-induced damage to nasal mucosa. Moreover, HE lowered the levels of serum IgE and histamine and inhibited IL-4 and IL-17 levels from AR mice but raised IL-2 and IFN-γ levels in AR-induced nasal lavage fluid. Our results also showed that HE elevated the protein levels of forkhead box P3 (Foxp3) and T-box transcription factor (T-bet) in AR-induced nasal mucosa tissue, whereas it inhibited signal transducer and activator of transcription (STAT) 3 and GATA binding protein 3 (GATA-3) protein levels. By regulating AR-induced inflammatory reaction and autoimmune response, HE also relieved OVA-induced AR. Thus, HE could be used as a potential drug to treat AR.


2010 ◽  
Vol 88 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Qiang Du ◽  
Gan-Zhu Feng ◽  
Li Shen ◽  
Jin Cui ◽  
Jian-Kang Cai

Paeonol, the main active component isolated from Moutan Cortex, possesses extensive pharmacological activities such as anti-inflammatory, anti-allergic, and immunoregulatory effects. In the present study, we examined the effects of paeonol on airway inflammation and hyperresponsiveness in a mouse model of allergic asthma. BALB/c mice sensitized and challenged with ovalbumin were administered paeonol intragastrically at a dose of 100 mg/kg daily. Paeonol significantly suppressed ovalbumin-induced airway hyperresponsiveness to acetylcholine chloride. Paeonol administration significantly inhibited the total inflammatory cell and eosinophil count in bronchoalveolar lavage fluid. Treatment with paeonol significantly enhanced IFN-γ levels and decreased interleukin-4 and interleukin-13 levels in bronchoalveolar lavage fluid and total immunoglobulin E levels in serum. Histological examination of lung tissue demonstrated that paeonol significantly attenuated allergen-induced lung eosinophilic inflammation and mucus-producing goblet cells in the airway. These data suggest that paeonol exhibits anti-inflammatory activity in allergic mice and may possess new therapeutic potential for the treatment of allergic bronchial asthma.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Lin-Feng Guo ◽  
Xue Chen ◽  
Shan-Shan Lei ◽  
Bo Li ◽  
Ning-Yu Zhang ◽  
...  

Objectives. Hyperuricemia (HUA) is a disease caused by increased production of uric acid (UA) or reduced excretion of UA in the body. Results of an epidemiological survey show that 60% of patients with HUA have hyperlipidemia (HPA). Dendrobium officinalis (DOF) six nostrum (DOS) is based on the theory of traditional Chinese medicine for the transformation of the traditional Chinese nostrum Si Miao Wan. In this article, we aim to discuss the efficacy and mechanism of DOS in reducing UA and regulating lipid metabolism. The rat model of HUA with HPA was induced by potassium oxonate (PO) combined with high-fat sorghum feed. We monitored the serum UA and blood lipids. Liver xanthine oxidase (XOD), adenosine deaminase (ADA), lipoprotein lipase (LPL), and fatty acid-binding protein (FABP1) activities were measured by enzyme-linked immunosorbent assay (ELISA) after the last administration of DOS. We performed a histopathological examination of rat kidney and intestine. Immunohistochemistry (IHC) was used to detect the expression of renal inflammatory proteins NLRP3 / Caspase-1 and intestinal inflammatory proteins TLR4 / NLRP3. We used western blot for measurement of liver hypoxanthine-guanine phosphoribosyl transferase (HPRT1) protein expression and renal PDZ domain protein kidney 1 (PDZK1) protein expression. DOS administration significantly reduced serum UA, total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-c) level, and improved liver steatosis in the model rat. At the same time, DOS treatment effectively inhibited liver XOD and ADA, increased the level of liver HPRT1, and reduced the production of UA. Additional studies had shown that DOS can restore normal UA excretion function in the intestine and kidney and regulated liver lipids metabolism. IHC and histopathological sections showed that DOS reduced the level of kidney, intestinal inflammatory body (NLRP3, Caspase-1, and TLR4), improved inflammation of the kidney and intestinal tract in rats. DOS is a promising drug that can effectively reduce serum UA and lipid level in the model rat. The mechanism of action may be related to inhibition of UA production, promotion of UA excretion, regulation of lipids metabolism, and anti-inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document