Antagonistic Action of Cells of Lactobacillus lactis toward Escherichia coli O157:H7 on Refrigerated Raw Chicken Meat†

1998 ◽  
Vol 61 (2) ◽  
pp. 166-170 ◽  
Author(s):  
MINDY M. BRASHEARS ◽  
SIOBHAN S. REILLY ◽  
STANLEY E. GILLILAND

Cells of a strain of Lactobacillus lactis selected for ability to produce hydrogen peroxide were added to Trypticase soy broth (TSB) containing Escherichia coli O157:H7 to determine if L. lactis was antagonistic toward the E. coli during storage at 7°C for 7 days. E. coli was enumerated on violet red bile agar. Three strains of E. coli O157:H7 (43894, 43890, and 35150) were evaluated. Control samples containing no L. lactis did not show significant declines in numbers of E. coli during the 7 days of storage. However, samples inoculated with at least 5.0 × 107 L. lactis per ml exhibited significant declines in numbers of E. coli after only 3 days of storage for all strains. Samples inoculated with fewer L. lactis displayed varying effects on E. coli O157:H7 depending on the strain. E. coli O157:H7 strain 43894 appeared to be the most resistant to the antagonistic action of the L. lactis. Interaction experiments in the presence of catalase indicated that hydrogen peroxide was the main factor responsible for the inhibitory action produced by the lactobacilli. Raw chicken breast meat inoculated with E. coli O157:H7 strain 43894 plus the cells of L. lactis and stored at 5°C exhibited declines in numbers of the pathogen, whereas those inoculated only with the E. coli exhibited no declines during storage at 5°C.

1999 ◽  
Vol 62 (11) ◽  
pp. 1336-1340 ◽  
Author(s):  
MINDY M. BRASHEARS ◽  
WENDY A. DURRE

Cells of Lactobacillus lactis were added to trypticase soy broth that contained cells of Escherichia coli O157:H7 or cells of Salmonella spp. in order to determine if L. lactis inhibited the pathogens. The inhibition of all pathogens was examined during growth at 37°C for 24 h. Inhibition of Salmonella spp. was also examined at refrigeration temperatures (6°C) for 5 days. One strain each of E. coli O157:H7, Salmonella Typhimurium, and Salmonella Enteritidis was examined. E. coli was enumerated on violet red bile agar, and Salmonella spp. were enumerated on brilliant green agar. In all experiments at 37°C, the L. lactis completely inhibited all pathogens, producing numbers that were not detectable after 24 h of incubation. There were significant (P > 0.05) increases in numbers of the pathogens in the control samples containing no L. lactis. There were significant (P < 0.05) declines in the pH of both control and L. lactis inoculated samples. There was a significantly (P < 0.05) larger decline in the pH of samples inoculated with L. lactis. Interaction studies with pH-neutralized broth indicated that acid production by L. lactis was primarily responsible for the inhibition. Numbers of Salmonella spp. incubated at 6°C did not decline significantly (P > 0.05) for control or inoculated samples, which suggests that this strain of L. lactis does not inhibit Salmonella spp. at refrigeration temperatures. Additionally, there were no significant (P > 0.05) changes in pH or in numbers of L. lactis during refrigerated storage.


2002 ◽  
Vol 65 (8) ◽  
pp. 1215-1220 ◽  
Author(s):  
CHIA-MIN LIN ◽  
SARAH S. MOON ◽  
MICHAEL P. DOYLE ◽  
KAY H. McWATTERS

Iceberg lettuce is a major component in vegetable salad and has been associated with many outbreaks of foodborne illnesses. In this study, several combinations of lactic acid and hydrogen peroxide were tested to obtain effective antibacterial activity without adverse effects on sensory characteristics. A five-strain mixture of Escherichia coli O157:H7, Salmonella enterica serotype Enteritidis, and Listeria monocytogenes was inoculated separately onto fresh-cut lettuce leaves, which were later treated with 1.5% lactic acid plus 1.5% hydrogen peroxide (H2O2) at 40°C for 15 min, 1.5% lactic acid plus 2% H2O2 at 22°C for 5 min, and 2% H2O2 at 50°C for 60 or 90 s. Control lettuce leaves were treated with deionized water under the same conditions. A 4-log reduction was obtained for lettuce treated with the combinations of lactic acid and H2O2 for E. coli O157:H7 and Salmonella Enteritidis, and a 3-log reduction was obtained for L. monocytogenes. However, the sensory characteristics of lettuce were compromised by these treatments. The treatment of lettuce leaves with 2% H2O2 at 50°C was effective not only in reducing pathogenic bacteria but also in maintaining good sensory quality for up to 15 days. A ≤4-log reduction of E. coli O157:H7 and Salmonella Enteritidis was achieved with the 2% H2O2 treatment, whereas a 3-log reduction of L. monocytogenes was obtained. There was no significant difference (P > 0.05) between pathogen population reductions obtained with 2% H2O2 with 60- and 90-s exposure times. Hydrogen peroxide residue was undetectable (the minimum level of sensitivity was 2 ppm) on lettuce surfaces after the treated lettuce was rinsed with cold water and centrifuged with a salad spinner. Hence, the treatment of lettuce with 2% H2O2 at 50°C for 60 s is effective in initially reducing substantial populations of foodborne pathogens and maintaining high product quality.


2002 ◽  
Vol 65 (1) ◽  
pp. 100-105 ◽  
Author(s):  
KUMAR S. VENKITANARAYANAN ◽  
CHIA-MIN LIN ◽  
HANNALORE BAILEY ◽  
MICHAEL P. DOYLE

The objective of this study was to develop a practical and effective method for inactivating or substantially reducing Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes on apples, oranges, and tomatoes. Apples, oranges, and tomatoes were spot-inoculated with five-strain mixtures of E. coli O157:H7, Salmonella Enteritidis, and L. monocytogenes near the stem end and were submerged in sterile deionized water containing 1.5% lactic acid plus 1.5% hydrogen peroxide for 15 min at 40°C. Inoculated samples treated with sterile deionized water at the same temperature and for the same duration served as controls. The bacterial pathogens on fruits subjected to the chemical treatment were reduced by >5.0 log10 CFU per fruit, whereas washing in deionized water decreased the pathogens by only 1.5 to 2.0 log10 CFU per fruit. Furthermore, substantial populations of the pathogens survived in the control wash water, whereas no E. coli O157:H7, Salmonella Enteritidis, or L. monocytogenes cells were detected in the chemical treatment solution. The sensory and qualitative characteristics of apples treated with the chemical wash solution were not adversely affected by the treatment. It was found that the treatment developed in this study could effectively be used to kill E. coli O157:H7, Salmonella Enteritidis, and L. monocytogenes on apples, oranges, and tomatoes at the processing or packaging level.


1977 ◽  
Vol 40 (12) ◽  
pp. 820-823 ◽  
Author(s):  
S. E. GILLILAND ◽  
M. L. SPECK

Lactobacillus acidophilus exerted antagonistic actions on growth of Staphylococcus aureus, Salmonella typhimurium, enteropathogenic Escherichia coli, and Clostridium perfringens when grown with each in associative cultures. S. aureus and C. perfringens were more sensitive to the inhibition than were S. typhimurium and E. coli. The amount of the antagonism produced varied among strains of L. acidophilus and could not be directly related to amounts of acid produced; hydrogen peroxide produced by the lactobacilli appeared to be partially responsible for the antagonistic interaction. The inhibitory effect was produced also under anaerobic conditions in a pre-reduced medium.


2017 ◽  
Vol 17 (2) ◽  
pp. 555-563 ◽  
Author(s):  
Husnu Sahan Guran ◽  
Aydın Vural ◽  
Mehmet Emin Erkan ◽  
Halil Durmusoglu

Abstract Escherichia coli O157 related foodborne illnesses continue to be one of the most important global public health problems in the world. This study aims to determine E. coli O157 prevalence in 375 chicken meat parts and giblets. The samples were collected randomly from several supermarkets and butchers in Diyarbakir, a city in southeast Turkey. They were analyzed and confirmed using the immunomagnetic separation (IMS), Vitek® 2 microbial identification system and polymerase chain reaction (PCR) method. This study also aims to detect the presence of fliCH7, eaeA, stx1, stx2 and hlyA genes by using PCR. The overall E. coli O157 prevalence in chicken meat parts and giblets was 1.3%. All of the E. coli O157 isolates carried rfbEO157 and eaeA genes; but not any fliCH7 and hlyA genes. The E. coli O157 isolates obtained from drumstick and breast meat carried either stx1 or stx2 genes, which were related to important virulence factors of the disease.


2012 ◽  
Vol 75 (12) ◽  
pp. 2208-2212 ◽  
Author(s):  
PETER M. A. TOIVONEN ◽  
CHANGWEN LU ◽  
SUSAN BACH ◽  
PASCAL DELAQUIS

Wounding of lettuce tissue has been examined previously by others in regard to browning reactions, and treatments to modulate wounding responses were evaluated for reduction of browning. However, the wounding process also releases oxygen radicals such as hydrogen peroxide. This study focused on the evaluation of two treatments that reduce hydrogen peroxide at cut surfaces (heat treatment and pyruvate addition) and one treatment that enhances its production (infusion with the fungal elicitor harpin). Hydrogen peroxide changes in response to treatment were also associated with resultant survival of Escherichia coli O157:H7, which was inoculated onto the lettuce before cutting. Heat-treated lettuce produced significantly less hydrogen peroxide, and microbial analysis showed that E. coli O157:H7 survival on packaged, heat-treated lettuce was higher than on non–heat-treated controls. Lettuce was also cut under a solution of sodium pyruvate (a well-known hydrogen peroxide quencher), and E. coli O157:H7 survival was found to be enhanced with that treatment. When lettuce was infused with harpin before cutting, hydrogen peroxide production was enhanced, and this was associated with reduced survival of E. coli O157:H7. These results collectively support the hypothesis that modulation of wound-generated hydrogen peroxide can have an influence on E. coli O157:H7 survival on cut and packaged romaine lettuce.


2009 ◽  
Vol 72 (6) ◽  
pp. 1201-1208 ◽  
Author(s):  
HUA YANG ◽  
PATRICIA A. KENDALL ◽  
LYDIA MEDEIROS ◽  
JOHN N. SOFOS

Solutions of selected household products were tested for their effectiveness against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Typhimurium. Hydrogen peroxide (1.5 and 3%), vinegar (2.5 and 5% acetic acid), baking soda (11, 33, and 50% sodium bicarbonate), household bleach (0.0314, 0.0933, and 0.670% sodium hypochlorite), 5% acetic acid (prepared from glacial acetic acid), and 5% citric acid solutions were tested against the three pathogens individually (five-strain composites of each, 108 CFU/ml) by using a modified AOAC International suspension test at initial temperatures of 25 and 55°C for 1 and 10 min. All bleach solutions (pH 8.36 to 10.14) produced a >5-log reduction of all pathogens tested after 1 min at 25°C, whereas all baking soda solutions (pH 7.32 to 7.55) were ineffective (<1-log reduction) even after 10 min at an initial temperature of 55°C. After 1 min at 25°C, 3% hydrogen peroxide (pH 2.75) achieved a >5-log reduction of both Salmonella Typhimurium and E. coli O157:H7, whereas undiluted vinegar (pH 2.58) had a similar effect only against Salmonella Typhimurium. Compared with 1 min at 25°C, greater reductions of L. monocytogenes (P < 0.05) were obtained with all organic acid and hydrogen peroxide treatments after 10 min at an initial temperature of 55°C. The efficacies of household compounds against all tested pathogens decreased in the following order: 0.0314% sodium hypochlorite > 3% hydrogen peroxide > undiluted vinegar and 5% acetic acid > 5% citric acid > baking soda (50% sodium bicarbonate). The sensitivity of the tested pathogens to all tested household compounds followed the sequence of Salmonella Typhimurium > E. coli O157: H7 > L. monocytogenes.


2016 ◽  
Vol 79 (8) ◽  
pp. 1316-1324 ◽  
Author(s):  
DIKE O. UKUKU ◽  
SUDARSAN MUKHOPADHYAY ◽  
DAVID GEVEKE ◽  
MODESTO OLANYA ◽  
BRENDAN NIEMIRA

ABSTRACT Surface structure and biochemical characteristics of bacteria and produce play a major role in how and where bacteria attach, complicating decontamination treatments. Whole cantaloupe rind surfaces were inoculated with Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes at 107 CFU/ml. Average population size of Salmonella, Escherichia coli O157:H7, and L. monocytogenes recovered after surface inoculation was 4.8 ± 0.12, 5.1 ± 0.14, and 3.6 ± 0.13 log CFU/cm2, respectively. Inoculated melons were stored at 5 and 22°C for 7 days before washing treatment interventions. Intervention treatments used were (i) water (H2O) at 22°C, (ii) H2O at 80°C, (iii) 3% hydrogen peroxide (H2O2) at 22°C, and (iv) a combination of 3% H2O2 and H2O at 80°C for 300 s. The strength of pathogen attachment (SR value) at days 0, 3, and 7 of storage was determined, and then the efficacy of the intervention treatments to detach, kill, and reduce transfer of bacteria to fresh-cut pieces during fresh-cut preparation was investigated. Populations of E. coli O157:H7 attached to the rind surface at significantly higher levels (P < 0.05) than Salmonella and L. monocytogenes, but Salmonella exhibited the strongest attachment (SR value) at all days tested. Washing with 3% H2O2 alone led to significant reduction (P < 0.05) of bacteria and caused some changes in bacterial cell morphology. A combination treatment with H2O and 3% H2O2 at 80°C led to an average 4-log reduction of bacterial pathogens, and no bacterial pathogens were detected in fresh-cut pieces prepared from this combination treatment, including enriched fresh-cut samples. The results of this study indicate that the microbial safety of fresh-cut pieces from treated cantaloupes was improved at day 6 of storage at 5°C and day 3 of storage at 10°C.


Sign in / Sign up

Export Citation Format

Share Document