Punicalagin Damages the Membrane of Salmonella Typhimurium

2020 ◽  
Vol 83 (12) ◽  
pp. 2102-2106
Author(s):  
GUANGHUI LI ◽  
YUNFENG XU ◽  
LIANG PAN ◽  
XIAODONG XIA

ABSTRACT Salmonella, a bacterial foodborne pathogen, can contaminate meat, milk, and vegetables. While appropriate measures are available to control Salmonella, the inhibitory phytochemicals from plants are gaining increased attention. Punicalagin, a natural antimicrobial, is one of the main active tannins isolated from Punica granatum L. To obtain a broader understanding of the effect of punicalagin on the cell membranes of Salmonella Typhimurium, the growth curves, extracellular potassium concentration, release of cell constituents, intracellular pH, membrane potential, and morphological features were characterized to elucidate the mechanisms of action. Treatment with punicalagin induced an increase in the extracellular concentrations of potassium and a release of cell constituents. A higher pH gradient, an increase in the intracellular pH, and cell membrane depolarization were observed after punicalagin treatment. Electron microscopy observations showed that the cell membrane structures of Salmonella Typhimurium were damaged by punicalagin. It is concluded that punicalagin inhibits the proliferation of Salmonella Typhimurium and destroys the integrity of the cell membrane, leading to a loss of cell homeostasis. These findings indicate that punicalagin has the potential to be developed as a future alternative to control Salmonella Typhimurium contamination in foods and reduce the risk of salmonellosis.

1994 ◽  
Vol 72 (4) ◽  
pp. 1686-1696 ◽  
Author(s):  
A. Amato ◽  
L. Ballerini ◽  
D. Attwell

1. The mean intracellular pH in area CA1 of rat hippocampal slices was monitored fluorescently after loading the cells with the dye BCECF-AM. 2. Including L-glutamate in the solution superfusing the slice led to the intracellular pH becoming more acid. This acidification had a roughly Michaelis-Menten dependence on the superfused glutamate concentration with a half-maximal dose around 200 microM: this value must overestimate the glutamate concentration at most of the cells, which will be reduced by uptake. 3. The glutamate-evoked acidification was not significantly reduced by blockers of glutamate-gated ion channels [6-cyano-7-nitroquinoxaline-2,3- dione (CNQX) and D-aminophosphonovalerate (APV)] nor by blockers of gamma-aminobutyric acid (GABA)- and glycine-gated channels (picrotoxin and strychnine), and so was not produced by H+ entry through alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid (AMPA) or N-methyl-D-aspartate (NMDA) receptor channels nor by HCO3- exit through the chloride channels controlled by GABA or glycine. 4. The glutamate-evoked acidification was not reduced by tetrodotoxin (TTX), ruling out the possibility of it being generated by action potentials. It was also unaffected by saturation of presynaptic L-amino-4-phosphonobutanoate (AP4) receptors with AP4. 5. In the presence of blockers of glutamate-, GABA-, and glycine-gated channels, the acidification showed the pharmacology of glutamate uptake and was reduced by a glutamate uptake blocker. 6. The glutamate-evoked acidification showed an ion dependence similar to that of glutamate uptake. It was abolished by removal of extracellular sodium and was reduced by raising the extracellular potassium concentration. It was unaffected by blockers of Na+/H+ exchange (amiloride) and Na+/HCO3- cotransport [4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)] and so was not produced by the Na+ influx accompanying glutamate uptake changing the activity of these carriers. 7. These data show that the glutamate uptake carrier acidifies hippocampal cells, possibly because it transports a pH-changing anion out of the cell as in salamander glial cells. Glutamate uptake may thus contribute to activity-induced pH changes in the nervous system.


2019 ◽  
pp. 7-14
Author(s):  
Hai Trieu Ly ◽  
Tuan Anh Vo ◽  
Viet Hong Phong Nguyen ◽  
Thi My Sa Pham ◽  
Bich Thao Lam ◽  
...  

Background: The natural antioxidants have an important role in the prevention of many diseases. The aim of study is to investigate phytochemical components, antioxidant activity and acute oral toxicity of Pomegranate (Punica granatum L.) fruit peel (PFP) extract. Materials and methods: Phytochemicals of PFP were determined by qualitative chemical tests, thin layer chromatography, total polyphenol and flavonoid contents. The PFP extract was evaluated for antioxidant activity by DPPH assay and MDA assay. In vivo acute oral toxicity test was conducted using Karber-Behrens method to determine LD50. Results: Results illustrated that PFP mainly contains flavonoids, alkaloids, tannins, triterpenes, saponins, and coumarins. PFP extract exhibited the total polyphenol and flavonoid contents with 189.97 mg gallic acid equivalent/g dry weight and 9.42 mg quercetin equivalent/g dry weight, respectively. The DPPH free radical scavenging and anti-lipid peroxidation activities of PFP extract were expressed with IC50 value of 4.80 μg/mL and 0.38 μg/ mL, sequentially. Simultaneously, the Dmax (the maximum dose administered to mice that no toxicity was observed) of PFP extract was determined to be 21.28 g/kg, equivalent to 35.64 g dried herb. Conclusion: The PFP extract is relatively safe and revealed high antioxidant activity. Key words: Punica granatum L.; polyphenols; flavonoids; gallic acid; quercetin; antioxidant activity; acute oral toxicity


2016 ◽  
Vol 45 (11) ◽  
pp. 1533-1543
Author(s):  
Ju-Ryun Na ◽  
Sunoh Kim ◽  
Ara Jo ◽  
Donghyuck Bae ◽  
Kyo-Nyeo Oh ◽  
...  

2021 ◽  
Vol 352 ◽  
pp. 129396
Author(s):  
Clarisse Gosset-Erard ◽  
Minjie Zhao ◽  
Sonia Lordel-Madeleine ◽  
Saïd Ennahar

Author(s):  
P. Panneerselvam ◽  
G. Selvakumar ◽  
A. N. Ganeshamurthy ◽  
Debasis Mitra ◽  
Ansuman Senapati

Sign in / Sign up

Export Citation Format

Share Document