scholarly journals Natural regeneration dynamics of three species of lianas in forest gaps - Moju, Pará state, Brazil

Author(s):  
Vivian Barroso Almeida ◽  
Fernando Cristóvam da Silva Jardim
2009 ◽  
Vol 20 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Guillermo Castro Marín ◽  
Mulualem Tigabu ◽  
Benigno González Rivas ◽  
Per Christer Odén

Forests ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 54 ◽  
Author(s):  
Zenaide Miranda ◽  
Marcelino Guedes ◽  
Anderson Batista ◽  
Diego Silva

2020 ◽  
Vol 66 (No. 10) ◽  
pp. 407-419
Author(s):  
Maame Esi Hammond ◽  
Radek Pokorny ◽  
Lumír Dobrovolný ◽  
Michal Friedl ◽  
Nina Hiitola

Forest gaps remain the optimal forest management practice in modern forestry. Upon all the physical properties of forest gaps, the ‘gap size’ feature stands out as an essential property. The effect of gap size on tree species composition and diversity of natural regeneration in forest gaps of different sizes was investigated. Eight research forest gaps were selected from the Training Forest School Enterprise, also called Masaryk Forest in Křtiny, a temperate mixed forest in the Czech Republic. By given gap sizes, small (&lt; 700 m<sup>2</sup>) and large gaps (≥ 700 m<sup>2</sup>) were defined. Forty-one (41) regeneration microsites (RSs) of 1 m<sup>2</sup> circular area at 2 m intervals were demarcated within each forest gap. These RSs served as data collection points. From the total of eleven (11) species enumerated, large gaps obtained higher species composition (10) and diversity (Simpson = 0.5 1-D; Shannon = 1.0 H and Pielou’s evenness = 0.5 J indices) records, yet, small gaps presented favourable conditions for prolific natural regeneration significantly. Light-adapted species demonstrated no significant difference (P &gt; 0.05) between small and large gaps, however, intermediate and shade-tolerant species were significantly higher (P &lt; 0.05) in small gaps. There were progressive declines in height growth of natural regeneration from 0–20 cm to 21–50 cm and 51+ cm in small and large gaps at R<sup>2 </sup>= 99% and 88%, respectively. <br /> The development of herbaceous vegetation in small and large gaps had positive and negative effects on the natural regeneration of Fagus sylvatica and Abies alba species, respectively.


2021 ◽  
Author(s):  
Davide Marangon ◽  
Mattia Pilotti ◽  
Federico Zancanaro ◽  
Maximiliano Costa ◽  
Emanuele Lingua

&lt;p&gt;Forests provide many important ecosystem services. Natural disturbances, such as wildfires, pest outbreaks and windrows, are the main phenomena shaping forest ecosystems. Due to both climate and global changes, extreme events are increasing in frequency and forests are thus increasingly being affected by stand replacing disturbances. Mountain forest dynamics and ecosystems services are critically influenced by disturbances, in particular storm. In this framework, is crucial to understand these environmental modifications, finding the best management strategies to restore or maintain ecosystem services provided by forests. After large disturbance, there are two different issues to deal with: the large amount of deadwood on the ground, and the needs of&amp;#160; regeneration in order to re-establish the forest cover. To face these problems different management strategies can be adopted. Salvage logging (total or partial) and no-intervention are the two opposite approaches to handle the large amount of deadwood. Natural regeneration or reforestation, instead, are the main strategies to consider to re-establish forest cover. In this study we focused on post-windstorm conditions, in particular concerning large windthrows caused by the Vaia storm, occurred in October 2018 on Eastern Italian Alps. After such large-scale event, natural regeneration is the most convenient strategy to regenerate forest. This process should take place in an area with a high amount of coarse wood debris (CWD). For this reason is crucial to understand the interaction between windthrown timber and regeneration dynamics. In this study we analyzed how CWD is able to create a favorable regeneration microsite enhancing seedling establishment probability. In particular, we focused on two different facilitative mechanisms provided by CWD: microsite amelioration and seedling protection. The former has been analyzed measuring temperature and SWC in the proximity of seedling planted in the surrounding of deadwood elements, the latter by recording browsing evidence at the end of the season. &amp;#160;In order to infer the CWD contribution, control sites have been established in empty sites (no CWD presence in the surrounding). Our results showed that in southern slopes, microsite with significative lower temperature are found northern to the logs, decreasing water stress for saplings. The ameliorative function of logs and CWD in general contribute to decrease the transplanting shock, increasing the probability to establish for saplings. Moreover, the presence of lying deadwood decreased significantly the browsing on saplings. The result of our study highlighted the importance of favorable regeneration microsites provided by deadwood, both for natural regeneration dynamics and for increasing the survival probability for planted saplings. Favorable microsites and nurse biological legacies should be considered in defining post-disturbance management strategies, promoting only a partial salvage logging or non-intervention &amp;#160;approaches as much as possible.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document