scholarly journals Hermite spline interpolents ― New methods for constructing and compressing Hermite interpolants

2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Hamid Mraoui ◽  
Driss Sbibih

International audience In this paper, we present a quite simple recursive method for the construction of classical tensor product Hermite spline interpolant of a function defined on a rectangular domain. We show that this function can be written under a recursive form and a sum of particular splines that have interesting properties. As application of this method, we give an algorithm which allows to compress Hermite data. In order to illustrate our results, some numerical examples are presented. Dans ce travail, nous présentons une méthode simple permettant de construire le produit tensoriel des interpolants splines d'Hermite d'une fonction définie sur un domaine rectangulaire. Nous montrons que cette fonction peut être décrite de manière récursive sous la forme d'une somme de fonctions splines qui vérifiant des propriétés intéressantes. Comme application de cette décomposition, nous décrivons un algorithme qui permet de compresser des données d'Hermite. Pour illustrer nos résultats théoriques, nous donnons quelques exemples numériques.

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Peter Bürgisser ◽  
Christian Ikenmeyer

International audience Kronecker coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the symmetric group $S_n$. They can also be interpreted as the coefficients of the expansion of the internal product of two Schur polynomials in the basis of Schur polynomials. We show that the problem $\mathrm{KRONCOEFF}$ of computing Kronecker coefficients is very difficult. More specifically, we prove that $\mathrm{KRONCOEFF}$ is #$\mathrm{P}$-hard and contained in the complexity class $\mathrm{GapP}$. Formally, this means that the existence of a polynomial time algorithm for $\mathrm{KRONCOEFF}$ is equivalent to the existence of a polynomial time algorithm for evaluating permanents. Les coefficients de Kronecker sont les multiplicités dans la décomposition du produit tensoriel de deux représentations irréductibles du groupe symétrique. On peut aussi les voir comme les coefficients du développement du produit interne des polynômes de Schur. Nous montrons que le problème $\mathrm{KRONCOEFF}$ de calculer les coefficients de Kronecker est très difficile. Plus précisément, nous prouvons que $\mathrm{KRONCOEFF}$ est #$\mathrm{P}$-dur et que $\mathrm{KRONCOEFF}$ est dans la classe de complexité $\mathrm{GapP}$. Cela veut dire qu'il existe un algorithme pour $\mathrm{KRONCOEFF}$ s'exécutant en temps polynomial si et seulement s'il existe un algorithme pour l'évaluation du permanent s'exécutant en temps polynomial.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Gábor Hetyei ◽  
Yuanan Diao ◽  
Kenneth Hinson

International audience Surveying the results of three recent papers and some currently ongoing research, we show how a generalization of Brylawski's tensor product formula to colored graphs may be used to compute the Jones polynomial of some fairly complicated knots and, in the future, even virtual knots. En faisant une revue de trois articles récents et de la recherche en cours, nous montrons comment une généralisation aux graphes colorés de la formule de Brylawski sur le produit tensoriel peut être utilisée à calculer le polynôme de Jones de quelques nœuds et, dans la future, même de quelques nœuds virtuels, bien compliqués.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Olivier Bernardi ◽  
Eric Fusy

International audience Based on a construction of the first author, we present a general bijection between certain decorated plane trees and certain orientations of planar maps with no counterclockwise circuit. Many natural classes of maps (e.g. Eulerian maps, simple triangulations,...) are in bijection with a subset of these orientations, and our construction restricts in a simple way on the subset. This gives a general bijective strategy for classes of maps. As a non-trivial application of our method we give the first bijective proofs for counting (rooted) simple triangulations and quadrangulations with a boundary of arbitrary size, recovering enumeration results found by Brown using Tutte's recursive method. En nous appuyant sur une construction du premier auteur, nous donnons une bijection générale entre certains arbres décorés et certaines orientations de cartes planaires sans cycle direct. De nombreuses classes de cartes (par exemple les eulériennes, les triangulations) sont en bijection avec un sous-ensemble de ces orientations, et notre construction se spécialise de manière simple sur le sous-ensemble. Cela donne un cadre bijectif général pour traiter les familles de cartes. Comme application non-triviale de notre méthode nous donnons les premières preuves bijectives pour l'énumération des triangulations et quadrangulations simples (enracinées) ayant un bord de taille arbitraire, et retrouvons ainsi des formules de comptage trouvées par Brown en utilisant la méthode récursive de Tutte.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Andrew Timothy Wilson

International audience A classical result of MacMahon states that inversion number and major index have the same distribution over permutations of a given multiset. In this work we prove a strengthening of this theorem originally conjectured by Haglund. Our result can be seen as an equidistribution theorem over the ordered partitions of a multiset into sets, which we call ordered multiset partitions. Our proof is bijective and involves a new generalization of Carlitz's insertion method. As an application, we develop refined Macdonald polynomials for hook shapes. We show that these polynomials are symmetric and give their Schur expansion. Un résultat classique de MacMahon affirme que nombre d’inversion et l’indice majeur ont la même distribution sur permutations d’un multi-ensemble donné. Dans ce travail, nous démontrons un renforcement de ce théorème origine conjecturé par Haglund. Notre résultat peut être considéré comme un théorème d’équirépartition sur les partitions ordonnées d’un multi-ensemble en ensembles, que nous appellerons partitions de multiset commandés. Notre preuve est bijective et implique une nouvelle généralisation de la méthode d’insertion de Carlitz. Comme application, nous développons des polynômes de Macdonald raffinés pour formes d’hameçons. Nous montrons que ces polynômes sont symétriques et donnent leur expansion Schur.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jean-Gabriel Luque

International audience We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques $P_{\lambda} (\mathbb{X} ;q,t)$ pour la spécialisation $t=q^k$. En particulier nous montrons une égalité reliant les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$ et $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. Nous en déduisons la description d'un opérateur dont les valeurs propres caractérisent les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$.


Author(s):  
Eisa Khosravi Dehdezi ◽  
Saeed Karimi

In this paper, two attractive iterative methods – conjugate gradient squared (CGS) and conjugate residual squared (CRS) – are extended to solve the generalized coupled Sylvester tensor equations [Formula: see text]. The proposed methods use tensor computations with no maricizations involved. Also, some properties of the new methods are presented. Finally, several numerical examples are given to compare the efficiency and performance of the proposed methods with some existing algorithms.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Aslam Noor ◽  
Khalida Inayat Noor ◽  
Eisa Al-Said ◽  
Muhammad Waseem

We suggest and analyze some new iterative methods for solving the nonlinear equationsf(x)=0using the decomposition technique coupled with the system of equations. We prove that new methods have convergence of fourth order. Several numerical examples are given to illustrate the efficiency and performance of the new methods. Comparison with other similar methods is given.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Fiza Zafar ◽  
Gulshan Bibi

We present a family of fourteenth-order convergent iterative methods for solving nonlinear equations involving a specific step which when combined with any two-step iterative method raises the convergence order by n+10, if n is the order of convergence of the two-step iterative method. This new class include four evaluations of function and one evaluation of the first derivative per iteration. Therefore, the efficiency index of this family is 141/5 =1.695218203. Several numerical examples are given to show that the new methods of this family are comparable with the existing methods.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Kevin Dilks ◽  
T. Kyle Petersen ◽  
John R. Stembridge

International audience Let $W \ltimes L$ be an irreducible affine Weyl group with Coxeter complex $\Sigma$, where $W$ denotes the associated finite Weyl group and $L$ the translation subgroup. The Steinberg torus is the Boolean cell complex obtained by taking the quotient of $\Sigma$ by the lattice $L$. We show that the ordinary and flag $h$-polynomials of the Steinberg torus (with the empty face deleted) are generating functions over $W$ for a descent-like statistic first studied by Cellini. We also show that the ordinary $h$-polynomial has a nonnegative $\gamma$-vector, and hence, symmetric and unimodal coefficients. In the classical cases, we also provide expansions, identities, and generating functions for the $h$-polynomials of Steinberg tori. Nous considérons un groupe de Weyl affine irréductible $W \ltimes L$ avec complexe de Coxeter $\Sigma$, où $W$ désigne le groupe de Weyl fini associé et $L$ le sous-groupe des translations. Le tore de Steinberg est le complexe cellulaire Booléen obtenu comme le quotient de $\Sigma$ par $L$. Nous montrons que les $h$-polynômes, ordinaires et de drapeaux, du tore de Steinberg (sans la face vide) sont des fonctions génératrices sur $W$ pour une statistique de type descente, étudiée en premier lieu par Cellini. Nous montrons également qu'un $h$-polynôme ordinaire possède un $\gamma$-vecteur positif, et par conséquent, a des coefficients symétriques et unimodaux. Dans les cas classiques, nous donnons également des développements, des identités et des fonctions génératrices pour les $h$-polynômes des tores de Steinberg.


2018 ◽  
Vol Volume 7, Number 1 (Research articles) ◽  
Author(s):  
Joëlle Coutaz ◽  
James L. Crowley

International audience We present an experience with the development and evaluation of AppsGate, an ecosystem for the home that can be programmed by end-users. We show the benefits from using the homes of the project team members as real-life living-labs. In particular, we discuss the first person perspective experience as an effective way to conduct longitudinal experiments in real world settings. We conclude that a programmable habitat is desirable provided that attention cost is minimized Cet article présente un retour d’expérience avec la mise en oeuvre et l’évaluation d’AppsGate, un écosystème domestique programmable par l’habitant. Nous montrons l’apport de l’utilisation des domiciles de membres du projet tout au long du processus de développement, et notamment l’intérêt de « vivre avec » comme technique d’expérimentation longitudinale


Sign in / Sign up

Export Citation Format

Share Document