scholarly journals Colored Tutte polynomials and composite knots

2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Gábor Hetyei ◽  
Yuanan Diao ◽  
Kenneth Hinson

International audience Surveying the results of three recent papers and some currently ongoing research, we show how a generalization of Brylawski's tensor product formula to colored graphs may be used to compute the Jones polynomial of some fairly complicated knots and, in the future, even virtual knots. En faisant une revue de trois articles récents et de la recherche en cours, nous montrons comment une généralisation aux graphes colorés de la formule de Brylawski sur le produit tensoriel peut être utilisée à calculer le polynôme de Jones de quelques nœuds et, dans la future, même de quelques nœuds virtuels, bien compliqués.

2013 ◽  
Vol 22 (6) ◽  
pp. 801-828
Author(s):  
Y. DIAO ◽  
G. HETYEI

The tensor product (G1,G2) of a graph G1 and a pointed graph G2 (containing one distinguished edge) is obtained by identifying each edge of G1 with the distinguished edge of a separate copy of G2, and then removing the identified edges. A formula to compute the Tutte polynomial of a tensor product of graphs was originally given by Brylawski. This formula was recently generalized to coloured graphs and the generalized Tutte polynomial introduced by Bollobás and Riordan. In this paper we generalize the coloured tensor product formula to relative Tutte polynomials of relative graphs, containing zero edges to which the usual deletion/contraction rules do not apply. As we have shown in a recent paper, relative Tutte polynomials may be used to compute the Jones polynomial of a virtual knot.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Christopher J. Brooks ◽  
Abraham Mart\'ın Campo ◽  
Frank Sottile

International audience We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decompositions of $\mathfrak{sl}_2\mathbb{C}$ -modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the inequality by estimating this integral. On montre que le groupe de Galois de tout problème de Schubert concernant des droites dans l'espace projective contient le groupe alterné. En utilisant un critère de Vakil et l'argument de position spéciale due à Schubert, ce résultat se déduit d'une inégalité particulière des nombres de Kostka des tableaux ayant deux rangées. Dans la plupart des cas, une injection combinatoriale facile montre l’inégalité. Pour les cas restants, on utilise le fait que ces nombres de Kostka apparaissent dans la décomposition en produit tensoriel des $\mathfrak{sl}_2\mathbb{C}$-modules. En interprétant le produit tensoriel comme l'action de certaines matrices de Toeplitz commutant entre elles, et en utilisant de l'analyse spectrale et les séries de Fourier, on réécrit l’inégalité comme la positivité d'une intégrale. L’inégalité sera établie en estimant cette intégrale.


2009 ◽  
Vol 18 (05) ◽  
pp. 561-589 ◽  
Author(s):  
Y. DIAO ◽  
G. HETYEI ◽  
K. HINSON

It is well-known that the Jones polynomial of an alternating knot is closely related to the Tutte polynomial of a special graph obtained from a regular projection of the knot. Relying on the results of Bollobás and Riordan, we introduce a generalization of Kauffman's Tutte polynomial of signed graphs for which describing the effect of taking a signed tensor product of signed graphs is very simple. We show that this Tutte polynomial of a signed tensor product of signed graphs may be expressed in terms of the Tutte polynomials of the original signed graphs by using a simple substitution rule. Our result enables us to compute the Jones polynomials of some large non-alternating knots. The combinatorics used to prove our main result is similar to Tutte's original way of counting "activities" and specializes to a new, perhaps simpler proof of the known formulas for the ordinary Tutte polynomial of the tensor product of unsigned graphs or matroids.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Cristian Lenart ◽  
Arthur Lubovsky

International audience Kirillov-Reshetikhin (KR) crystals are colored directed graphs encoding the structure of certain finite-dimensional representations of affine Lie algebras. A tensor product of column shape KR crystals has recently been realized in a uniform way, for all untwisted affine types, in terms of the quantum alcove model. We enhance this model by using it to give a uniform realization of the combinatorial $R$-matrix, i.e., the unique affine crystal isomorphism permuting factors in a tensor product of KR crystals. In other words, we are generalizing to all Lie types Schützenberger’s sliding game (jeu de taquin) for Young tableaux, which realizes the combinatorial $R$-matrix in type $A$. We also show that the quantum alcove model does not depend on the choice of a sequence of alcoves Les cristaux de Kirillov–Reshetikhin (KR) sont des graphes orientés avec des arêtes étiquetées qui encodent certaines représentations de dimension finie des algèbres de Lie affines. Les produits tensoriels des cristaux KR de type colonne ont été récemment réalisés de manière uniforme, pour tous les types affines symétriques, en termes du modèle des alcôves quantique. Nous enrichissons ce modèle en l’utilisant pour donner une réalisation uniforme de la $R$-matrice combinatoire, c’est à dire, l’isomorphisme des cristaux affines unique quit permute les facteurs dans un produit tensoriel des cristaux KR. En d’autres termes, nous généralisons pour tous les types de Lie le jeu de taquin de Schützenberger sur les tableaux de Young, qui réalise la $R$-matrice combinatoire dans le type $A$. Nous montrons aussi que le modèle des alcôves quantique ne dépend pas du choix d’une suite d’alcôves.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Peter Bürgisser ◽  
Christian Ikenmeyer

International audience Kronecker coefficients are the multiplicities in the tensor product decomposition of two irreducible representations of the symmetric group $S_n$. They can also be interpreted as the coefficients of the expansion of the internal product of two Schur polynomials in the basis of Schur polynomials. We show that the problem $\mathrm{KRONCOEFF}$ of computing Kronecker coefficients is very difficult. More specifically, we prove that $\mathrm{KRONCOEFF}$ is #$\mathrm{P}$-hard and contained in the complexity class $\mathrm{GapP}$. Formally, this means that the existence of a polynomial time algorithm for $\mathrm{KRONCOEFF}$ is equivalent to the existence of a polynomial time algorithm for evaluating permanents. Les coefficients de Kronecker sont les multiplicités dans la décomposition du produit tensoriel de deux représentations irréductibles du groupe symétrique. On peut aussi les voir comme les coefficients du développement du produit interne des polynômes de Schur. Nous montrons que le problème $\mathrm{KRONCOEFF}$ de calculer les coefficients de Kronecker est très difficile. Plus précisément, nous prouvons que $\mathrm{KRONCOEFF}$ est #$\mathrm{P}$-dur et que $\mathrm{KRONCOEFF}$ est dans la classe de complexité $\mathrm{GapP}$. Cela veut dire qu'il existe un algorithme pour $\mathrm{KRONCOEFF}$ s'exécutant en temps polynomial si et seulement s'il existe un algorithme pour l'évaluation du permanent s'exécutant en temps polynomial.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
François Bergeron ◽  
Aaron Lauve

International audience We analyze the structure of the algebra $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ of symmetric polynomials in non-commuting variables in so far as it relates to $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$, its commutative counterpart. Using the "place-action'' of the symmetric group, we are able to realize the latter as the invariant polynomials inside the former. We discover a tensor product decomposition of $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ analogous to the classical theorems of Chevalley, Shephard-Todd on finite reflection groups. In the case $|\mathbf{x}|= \infty$, our techniques simplify to a form readily generalized to many other familiar pairs of combinatorial Hopf algebras. Nous analysons la structure de l'algèbre $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ des polynômes symétriques en des variables non-commutatives pour obtenir des analogues des résultats classiques concernant la structure de l'anneau $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ des polynômes symétriques en des variables commutatives. Plus précisément, au moyen de "l'action par positions'', on réalise $\mathbb{K}[\mathbf{x}]^{\mathfrak{S}_n}$ comme sous-module de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$. On découvre alors une nouvelle décomposition de $\mathbb{K}\langle \mathbf{x}\rangle^{\mathfrak{S}_n}$ comme produit tensoriel, obtenant ainsi un analogue des théorèmes classiques de Chevalley et Shephard-Todd. Dans le cas $|\mathbf{x}|= \infty$, nos techniques se simplifient en une forme aisément généralisables à beaucoup d'autres paires d'algèbres de Hopf familières.


2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Hamid Mraoui ◽  
Driss Sbibih

International audience In this paper, we present a quite simple recursive method for the construction of classical tensor product Hermite spline interpolant of a function defined on a rectangular domain. We show that this function can be written under a recursive form and a sum of particular splines that have interesting properties. As application of this method, we give an algorithm which allows to compress Hermite data. In order to illustrate our results, some numerical examples are presented. Dans ce travail, nous présentons une méthode simple permettant de construire le produit tensoriel des interpolants splines d'Hermite d'une fonction définie sur un domaine rectangulaire. Nous montrons que cette fonction peut être décrite de manière récursive sous la forme d'une somme de fonctions splines qui vérifiant des propriétés intéressantes. Comme application de cette décomposition, nous décrivons un algorithme qui permet de compresser des données d'Hermite. Pour illustrer nos résultats théoriques, nous donnons quelques exemples numériques.


2017 ◽  
Vol 28 (10) ◽  
pp. 1750067 ◽  
Author(s):  
M. Alaghmandan ◽  
I. G. Todorov ◽  
L. Turowska

We initiate the study of the completely bounded multipliers of the Haagerup tensor product [Formula: see text] of two copies of the Fourier algebra [Formula: see text] of a locally compact group [Formula: see text]. If [Formula: see text] is a closed subset of [Formula: see text] we let [Formula: see text] and show that if [Formula: see text] is a set of spectral synthesis for [Formula: see text] then [Formula: see text] is a set of local spectral synthesis for [Formula: see text]. Conversely, we prove that if [Formula: see text] is a set of spectral synthesis for [Formula: see text] and [Formula: see text] is a Moore group then [Formula: see text] is a set of spectral synthesis for [Formula: see text]. Using the natural identification of the space of all completely bounded weak* continuous [Formula: see text]-bimodule maps with the dual of [Formula: see text], we show that, in the case [Formula: see text] is weakly amenable, such a map leaves the multiplication algebra of [Formula: see text] invariant if and only if its support is contained in the antidiagonal of [Formula: see text].


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jean-Gabriel Luque

International audience We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques $P_{\lambda} (\mathbb{X} ;q,t)$ pour la spécialisation $t=q^k$. En particulier nous montrons une égalité reliant les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$ et $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. Nous en déduisons la description d'un opérateur dont les valeurs propres caractérisent les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$.


2012 ◽  
Vol Vol. 14 no. 2 (Graph Theory) ◽  
Author(s):  
Laurent Gourvès ◽  
Adria Lyra ◽  
Carlos A. Martinhon ◽  
Jérôme Monnot

Graph Theory International audience In this paper we deal from an algorithmic perspective with different questions regarding properly edge-colored (or PEC) paths, trails and closed trails. Given a c-edge-colored graph G(c), we show how to polynomially determine, if any, a PEC closed trail subgraph whose number of visits at each vertex is specified before hand. As a consequence, we solve a number of interesting related problems. For instance, given subset S of vertices in G(c), we show how to maximize in polynomial time the number of S-restricted vertex (resp., edge) disjoint PEC paths (resp., trails) in G(c) with endpoints in S. Further, if G(c) contains no PEC closed trails, we show that the problem of finding a PEC s-t trail visiting a given subset of vertices can be solved in polynomial time and prove that it becomes NP-complete if we are restricted to graphs with no PEC cycles. We also deal with graphs G(c) containing no (almost) PEC cycles or closed trails through s or t. We prove that finding 2 PEC s-t paths (resp., trails) with length at most L > 0 is NP-complete in the strong sense even for graphs with maximum degree equal to 3 and present an approximation algorithm for computing k vertex (resp., edge) disjoint PEC s-t paths (resp., trails) so that the maximum path (resp., trail) length is no more than k times the PEC path (resp., trail) length in an optimal solution. Further, we prove that finding 2 vertex disjoint s-t paths with exactly one PEC s-t path is NP-complete. This result is interesting since as proved in Abouelaoualim et. al.(2008), the determination of two or more vertex disjoint PEC s-t paths can be done in polynomial time. Finally, if G(c) is an arbitrary c-edge-colored graph with maximum vertex degree equal to four, we prove that finding two monochromatic vertex disjoint s-t paths with different colors is NP-complete. We also propose some related problems.


Sign in / Sign up

Export Citation Format

Share Document