scholarly journals Polytopes and $C^1$-convex bodies

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Karim Adiprasito ◽  
José Alejandro Samper

International audience The face numbers of simplicial polytopes that approximate $C^1$-convex bodies in the Hausdorff metric is studied. Several structural results about the skeleta of such polytopes are studied and used to derive a lower bound theorem for this class of polytopes. This partially resolves a conjecture made by Kalai in 1994: if a sequence $\{P_n\}_{n=0}^{\infty}$ of simplicial polytopes converges to a $C^1$-convex body in the Hausdorff distance, then the entries of the $g$-vector of $P_n$ converge to infinity. Nous étudions les nombres de faces de polytopes simpliciaux qui se rapprochent de $C^1$-corps convexes dans la métrique Hausdorff. Plusieurs résultats structurels sur le skeleta de ces polytopes sont recherchées et utilisées pour calculer un théorème limite inférieure de cette classe de polytopes. Cela résout partiellement une conjecture formulée par Kalai en 1994: si une suite $\{P_n\}_{n=0}^{\infty}$ de polytopes simpliciaux converge vers une $C^1$-corps convexe dans la distance Hausdorff, puis les entrées du $g$-vecteur de $P_n$ convergent vers l’infini.

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Eran Nevo ◽  
Guillermo Pineda-Villavicencio ◽  
Julien Ugon ◽  
David Yost

International audience this is an extended abstract of the full version. We study n-vertex d-dimensional polytopes with at most one nonsimplex facet with, say, d + s vertices, called almost simplicial polytopes. We provide tight lower and upper bounds for the face numbers of these polytopes as functions of d, n and s, thus generalizing the classical Lower Bound Theorem by Barnette and Upper Bound Theorem by McMullen, which treat the case s = 0. We characterize the minimizers and provide examples of maximizers, for any d.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Gábor Hetyei

International audience We introduce the short toric polynomial associated to a graded Eulerian poset. This polynomial contains the same information as Stanley's pair of toric polynomials, but allows different algebraic manipulations. Stanley's intertwined recurrence may be replaced by a single recurrence, in which the degree of the discarded terms is independent of the rank. A short toric variant of the formula by Bayer and Ehrenborg, expressing the toric h-vector in terms of the cd-index, may be stated in a rank-independent form, and it may be shown using weighted lattice path enumeration and the reflection principle. We use our techniques to derive a formula expressing the toric h-vector of a dual simplicial Eulerian poset in terms of its f-vector. This formula implies Gessel's formula for the toric h-vector of a cube, and may be used to prove that the nonnegativity of the toric h-vector of a simple polytope is a consequence of the Generalized Lower Bound Theorem holding for simplicial polytopes. Nous introduisons le polynôme torique court associé à un ensemble ordonné Eulérien. Ce polynôme contient la même information que le couple de polynômes toriques de Stanley, mais il permet des manipulations algébriques différentes. La récurrence entrecroisée de Stanley peut être remplacée par une seule récurrence dans laquelle le degré des termes écartés est indépendant du rang. La variante torique courte de la formule de Bayer et Ehrenborg, qui exprime le vecteur torique d'un ensemble ordonné Eulérien en termes de son cd-index, est énoncée sous une forme qui ne dépend pas du rang et qui peut être démontrée en utilisant une énumération des chemins pondérés et le principe de réflexion. Nous utilisons nos techniques pour dériver une formule exprimant le vecteur h-torique d'un ensemble ordonné Eulérien dont le dual est simplicial, en termes de son f-vecteur. Cette formule implique la formule de Gessel pour le vecteur h-torique d'un cube, et elle peut être utilisée pour démontrer que la positivité du vecteur h-torique d'un polytope simple est une conséquence du Théorème de la Borne Inférieure Généralisé appliqué aux polytopes simpliciaux.


2018 ◽  
Vol 30 (6) ◽  
pp. 1539-1572
Author(s):  
Djordje Baralić ◽  
Pavle V. M. Blagojević ◽  
Roman Karasev ◽  
Aleksandar Vučić

Abstract In this paper, we study the {\mathbb{Z}/2} action on the real Grassmann manifolds {G_{n}(\mathbb{R}^{2n})} and {\widetilde{G}_{n}(\mathbb{R}^{2n})} given by taking the (appropriately oriented) orthogonal complement. We completely evaluate the related {\mathbb{Z}/2} Fadell–Husseini index utilizing a novel computation of the Stiefel–Whitney classes of the wreath product of a vector bundle. These results are used to establish the following geometric result about the orthogonal shadows of a convex body: For {n=2^{a}(2b+1)} , {k=2^{a+1}-1} , a convex body C in {\mathbb{R}^{2n}} , and k real-valued functions {\alpha_{1},\ldots,\alpha_{k}} continuous on convex bodies in {\mathbb{R}^{2n}} with respect to the Hausdorff metric, there exists a subspace {V\subseteq\mathbb{R}^{2n}} such that projections of C to V and its orthogonal complement {V^{\perp}} have the same value with respect to each function {\alpha_{i}} , that is, {\alpha_{i}(p_{V}(C))=\alpha_{i}(p_{V^{\perp}}(C))} for all {1\leq i\leq k} .


Author(s):  
H. P. F. Swinnerton-Dyer

Let C be a bounded closed convex body in n dimensions, symmetric about the origin. Any lattice Λ containing the origin but no other interior point of C is called admissible. There is a positive lower bound Δ(C) for the determinants of admissible lattices (since the origin is inside C); and any admissible lattice with determinant Δ(C) is called critical. Suppose that Λ is any admissible lattice, with determinant d(Λ). We may define A by a fixed set of generating points Li (i = 1,2, …, n); and we shall say that a lattice Λ′ lies in a small neighbourhood of Λ if Λ′ can be generated by a set of points L′i (i = 1,2, …, n) each of which lies in a small neighbourhood of the corresponding Li. We shall call Λ extremal if in a sufficiently small neighbourhood of Λ there are no admissible lattices Λ′ with d(Λ′) < d(Λ). Thus all critical lattices are extremal.


2019 ◽  
Vol 72 (2) ◽  
pp. 537-556
Author(s):  
Eran Nevo ◽  
Guillermo Pineda-Villavicencio ◽  
Julien Ugon ◽  
David Yost

AbstractWe study $n$-vertex $d$-dimensional polytopes with at most one nonsimplex facet with, say, $d+s$ vertices, called almost simplicial polytopes. We provide tight lower and upper bound theorems for these polytopes as functions of $d,n$, and $s$, thus generalizing the classical Lower Bound Theorem by Barnette and the Upper Bound Theorem by McMullen, which treat the case where $s=0$. We characterize the minimizers and provide examples of maximizers for any $d$. Our construction of maximizers is a generalization of cyclic polytopes, based on a suitable variation of the moment curve, and is of independent interest.


1990 ◽  
Vol 42 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Imre Bárány ◽  
Tudor Zamfirescu

The most usual diameters in the world are those of a sphere and they all contain its centre. More generally, a chord of a convex body in Rd is called a diameter if there are two parallel supporting hyperplanes at the two endpoints of the chord.It is easily seen that there are points on at least two diameters. From a result of Kosiński [6] proved in a more general setting it follows that every convex body has a point lying on at least three diameters. Does a typical convex body behave like a sphere and contain a point on infinitely or even uncountably many diameters?But what is a typical convex body? The space 𝒦 of all convex bodies (d-dimensional compact convex sets) in Rd, equipped with the Hausdorff metric, is a Baire space.


2018 ◽  
Vol 18 (1) ◽  
pp. 105-114
Author(s):  
Gilles Bonnet

AbstractThis paper presents bounds for the best approximation, with respect to the Hausdorff metric, of a convex bodyKby a circumscribed polytopePwith a given number of facets. These bounds are of particular interest ifKis elongated. To measure the elongation of the convex set, its isoperimetric ratioVj(K)1/jVi(K)−1/iis used.


1996 ◽  
Vol 39 (4) ◽  
pp. 448-459 ◽  
Author(s):  
Endre Makai ◽  
Horst Martini

AbstractLet d ≥ 2, and K ⊂ ℝd be a convex body with 0 ∈ int K. We consider the intersection body IK, the cross-section body CK and the projection body ΠK of K, which satisfy IK ⊂ CK ⊂ ΠK. We prove that [bd(IK)] ∩ [bd(CK)] ≠ (a joint observation with R. J. Gardner), while for d ≥ 3 the relation [CK] ⊂ int(ΠK) holds for K in a dense open set of convex bodies, in the Hausdorff metric. If IK = c ˙ CK for some constant c > 0, then K is centred, and if both IK and CK are centred balls, then K is a centred ball. If the chordal symmetral and the difference body of K are constant multiples of each other, then K is centred; if both are centred balls, then K is a centred ball. For d ≥ 3 we determine the minimal number of facets, and estimate the minimal number of vertices, of a convex d-polytope P having no plane shadow boundary with respect to parallel illumination (this property is related to the inclusion [CP] ⊂ int(ΠP)).


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Hailun Zheng

International audience We prove that among all flag 3-manifolds on n vertices, the join of two circles with [n 2] and [n 2] vertices respectively is the unique maximizer of the face numbers. This solves the first case of a conjecture due to Lutz and Nevo. Further, we establish a sharp upper bound on the number of edges of flag 5-manifolds and characterize the cases of equality. We also show that the inequality part of the flag upper bound conjecture continues to hold for all flag 3-dimensional Eulerian complexes and characterize the cases of equality in this class.


2018 ◽  
Vol 61 (3) ◽  
pp. 541-561 ◽  
Author(s):  
Steven Klee ◽  
Eran Nevo ◽  
Isabella Novik ◽  
Hailun Zheng

Sign in / Sign up

Export Citation Format

Share Document