cyclic polytopes
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 2)

H-INDEX

8
(FIVE YEARS 0)

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Steven N. Karp

International audience The totally nonnegative Grassmannian Gr≥0 k,n is the set of k-dimensional subspaces V of Rn whose nonzero Plucker coordinates all have the same sign. In their study of scattering amplitudes in N = 4 supersym- metric Yang-Mills theory, Arkani-Hamed and Trnka (2013) considered the image (called an amplituhedron) of Gr≥0 k,n under a linear map Z : Rn → Rr, where k ≤ r and the r × r minors of Z are all positive. One reason they required this positivity condition is to ensure that the map Gr≥0 k,n → Grk,r induced by Z is well defined, i.e. it takes everynelement of Gr≥0 k,n to a k-dimensional subspace of Rr. Lam (2015) gave a sufficient condition for the induced map Gr≥0 k,n → Grk,r to be well defined, in which case he called the image a Grassmann polytope. (In the case k = 1, Grassmann polytopes are just polytopes, and amplituhedra are cyclic polytopes.) We give a necessary and sufficient condition for the induced map Gr≥0 k,n → Grk,r to be well defined, in terms of sign variation. Using previous work we presented at FPSAC 2015, we obtain an equivalent condition in terms of the r × r minors of Z (assuming Z has rank r).


2019 ◽  
Vol 72 (2) ◽  
pp. 537-556
Author(s):  
Eran Nevo ◽  
Guillermo Pineda-Villavicencio ◽  
Julien Ugon ◽  
David Yost

AbstractWe study $n$-vertex $d$-dimensional polytopes with at most one nonsimplex facet with, say, $d+s$ vertices, called almost simplicial polytopes. We provide tight lower and upper bound theorems for these polytopes as functions of $d,n$, and $s$, thus generalizing the classical Lower Bound Theorem by Barnette and the Upper Bound Theorem by McMullen, which treat the case where $s=0$. We characterize the minimizers and provide examples of maximizers for any $d$. Our construction of maximizers is a generalization of cyclic polytopes, based on a suitable variation of the moment curve, and is of independent interest.


2015 ◽  
Vol 53 (4) ◽  
pp. 809-816 ◽  
Author(s):  
Yuri Bogomolov ◽  
Samuel Fiorini ◽  
Aleksandr Maksimenko ◽  
Kanstantsin Pashkovich

2014 ◽  
Vol 43 (2) ◽  
pp. 778-794
Author(s):  
Takayuki Hibi ◽  
Akihiro Higashitani ◽  
Lukas Katthän ◽  
Ryota Okazaki
Keyword(s):  

2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Bernd Gonska ◽  
Arnau Padrol

International audience We present a very simple explicit technique to generate a large family of point configurations with neighborly Delaunay triangulations. This proves that there are superexponentially many combinatorially distinct neighborly $d$-polytopes with $n$ vertices that admit realizations inscribed on the sphere. These are the first examples of inscribable neighborly polytopes that are not cyclic polytopes, and provide the current best lower bound for the number of combinatorial types of inscribable polytopes (and thus also of Delaunay triangulations). It coincides with the current best lower bound for the number of combinatorial types of polytopes. Nous présentons une technique explicite simple pour générer une large famille de configurations de points dont les triangulations de Delaunay sontneighborly. Cela prouve que le nombre de $d$-polytopes combinatoirement distincts avec $n$ sommets et admettant une réalisation inscrite sur la sphère est surexponentiel. Ce sont les premiers exemples de polytopes inscriptibles neighborly qui ne sont pas des polytopes cycliques et ils donnent la meilleure borne inférieure actuelle pour le nombre de types combinatoires de polytopes inscriptibles (et donc aussi de triangulations de Delaunay). Cette borne coïncide avec la meilleure borne inférieure actuelle pour le nombre de types combinatoires de polytopes.


2013 ◽  
Vol 96 (1) ◽  
pp. 61-77 ◽  
Author(s):  
TAKAYUKI HIBI ◽  
AKIHIRO HIGASHITANI ◽  
LUKAS KATTHÄN ◽  
RYOTA OKAZAKI

AbstractLet $d$ and $n$ be positive integers such that $n\geq d+ 1$ and ${\tau }_{1} , \ldots , {\tau }_{n} $ integers such that ${\tau }_{1} \lt \cdots \lt {\tau }_{n} $. Let ${C}_{d} ({\tau }_{1} , \ldots , {\tau }_{n} )\subset { \mathbb{R} }^{d} $ denote the cyclic polytope of dimension $d$ with $n$ vertices $({\tau }_{1} , { \tau }_{1}^{2} , \ldots , { \tau }_{1}^{d} ), \ldots , ({\tau }_{n} , { \tau }_{n}^{2} , \ldots , { \tau }_{n}^{d} )$. We are interested in finding the smallest integer ${\gamma }_{d} $ such that if ${\tau }_{i+ 1} - {\tau }_{i} \geq {\gamma }_{d} $ for $1\leq i\lt n$, then ${C}_{d} ({\tau }_{1} , \ldots , {\tau }_{n} )$ is normal. One of the known results is ${\gamma }_{d} \leq d(d+ 1)$. In the present paper a new inequality ${\gamma }_{d} \leq {d}^{2} - 1$ is proved. Moreover, it is shown that if $d\geq 4$ with ${\tau }_{3} - {\tau }_{2} = 1$, then ${C}_{d} ({\tau }_{1} , \ldots , {\tau }_{n} )$ is not very ample.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Steffen Oppermann ◽  
Hugh Thomas

International audience We give a new description of the combinatorics of triangulations of even-dimensional cyclic polytopes, and of their bistellar flips. We show that the tropical exchange relation governing the number of intersections between diagonals of a polygon and a lamination (which generalizes to arbitrary surfaces) can also be generalized in a different way, to the setting of higher dimensional cyclic polytopes. Nous donnons une nouvelle description de la combinatoire des triangulations des polytopes cycliques, et de leurs mouvements bistellaires. Nous démontrons que la relation d’échange qui gouverne le nombre d'intersections entre les diagonaux d'une polygone et une lamination (qui peut être généralisée à une surface arbitraire) peut également être généralisée au cadre des polytopes cycliques.


Sign in / Sign up

Export Citation Format

Share Document