scholarly journals The cluster basis $\mathbb{Z}[x_{1,1},…,x_{3,3}]

2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Mark Skandera

International audience We show that the set of cluster monomials for the cluster algebra of type $D_4$ contains a basis of the $\mathbb{Z}$-module $\mathbb{Z}[x_{1,1},\ldots ,x_{3,3}]$. We also show that the transition matrices relating this cluster basis to the natural and the dual canonical bases are unitriangular and nonnegative. These results support a conjecture of Fomin and Zelevinsky on the equality of the cluster and dual canonical bases. In the event that this conjectured equality is true, our results also imply an explicit factorization of each dual canonical basis element as a product of cluster variables. Nous montrons que l'ensemble des monômes de l'algebre "cluster'' $D_4$ contient une base-$\mathbb{Z}$ pour le module $\mathbb{Z}[x_{1,1},\ldots ,x_{3,3}]$. Nous montrons aussi que les matrices transitoires qui relient cette base à la base canonique duale sont unitriangulaires. Ces résultats renforcent une conjecture de Fomin et de Zelevinsky sur l'égalité de ces deux bases. Si cette égalité s'avérait être vraie, notre résultat donnerait aussi une factorisation des éléments de la base canonique duale.

10.37236/994 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Mark Skandera

We show that the set of cluster monomials for the cluster algebra of type $D_4$ contains a basis of the ${\Bbb Z}$-module ${\Bbb Z}[x_{1,1},\dots,x_{3,3}]$. We also show that the transition matrices relating this cluster basis to the natural and the dual canonical bases are unitriangular and nonnegative. These results support a conjecture of Fomin and Zelevinsky on the equality of the cluster and dual canonical bases. In the event that this conjectured equality is true, our results also imply an explicit factorization of each dual canonical basis element as a product of cluster variables.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Brendon Rhoades

International audience The polynomial ring $\mathbb{Z}[x_{11}, . . . , x_{33}]$ has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group $U_q(\mathfrak{sl}3(\mathbb{C}))$. On the other hand, $\mathbb{Z}[x_{11}, . . . , x_{33}]$ inherits a basis from the cluster monomial basis of a geometric model of the type $D_4$ cluster algebra. We prove that these two bases are equal. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky. This also provides an explicit factorization of the dual canonical basis elements of $\mathbb{Z}[x_{11}, . . . , x_{33}]$ into irreducible polynomials. L'anneau de polynômes $\mathbb{Z}[x_{11}, . . . , x_{33}]$ a une base appelée base duale canonique, et dont une quantification facilite l'étude des représentations du groupe quantique $U_q(\mathfrak{sl}3(\mathbb{C}))$. D'autre part, $\mathbb{Z}[x_{11}, . . . , x_{33}]$ admet une base issue de la base des monômes d'amas de l'algèbre amassée géométrique de type $D_4$. Nous montrons que ces deux bases sont égales. Ceci prolonge les travaux de Skandera et démontre une conjecture de Fomin et Zelevinsky. Ceci fournit également une factorisation explicite en polynômes irréductibles des éléments de la base duale canonique de $\mathbb{Z}[x_{11}, . . . , x_{33}]$ .


2010 ◽  
Vol Vol. 12 no. 5 (Combinatorics) ◽  
Author(s):  
Brendon Rhoades

Combinatorics International audience The polynomial ring Z[x(11), ..., x(33)] has a basis called the dual canonical basis whose quantization facilitates the study of representations of the quantum group U-q(sl(3) (C)). On the other hand, Z[x(1 1), ... , x(33)] inherits a basis from the cluster monomial basis of a geometric model of the type D-4 cluster algebra. We prove that these two bases are equal. This extends work of Skandera and proves a conjecture of Fomin and Zelevinsky.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Mark Skandera ◽  
Justin Lambright

International audience We show that dual canonical basis elements of the quantum polynomial ring in $n^2$ variables can be expressed as specializations of dual canonical basis elements of $0$-weight spaces of other quantum polynomial rings. Our results rely upon the natural appearance in the quantum polynomial ring of Kazhdan-Lusztig polynomials, $R$-polynomials, and certain single and double parabolic generalizations of these. Nous démontrons que des éléments de la base canonique duale de l'anneau quantique des polynômes en $n^2$ variables peuvent s'exprimer en termes des spécialisations d'éléments de la base canonique duale des espaces de poids $0$ d'autres anneaux quantiques. Nos résultats dépendent fortement de l'apparition naturelle des polynômes de Kazhdan-Lusztig, des $R$-polynômes, et de certaines généralisations simplement et doublement paraboliques de ces polynômes dans l'anneau quantique.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Charles Buehrle ◽  
Mark Skandera

International audience We use the polynomial ring $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ to modify the Kazhdan-Lusztig construction of irreducible $S_n$-modules. This modified construction produces exactly the same matrices as the original construction in [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], but does not employ the Kazhdan-Lusztig preorders. We also show that our modules are related by unitriangular transition matrices to those constructed by Clausen in [$\textit{J. Symbolic Comput.}$ $\textbf{11}$ (1991)]. This provides a $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$-analog of results of Garsia-McLarnan in [$\textit{Adv. Math.}$ $\textbf{69}$ (1988)]. Nous utilisons l'anneau $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$ pour modifier la construction Kazhdan-Lusztig des modules-$S_n$ irréductibles dans $\mathbb{C}[S_n]$. Cette construction modifiée produit exactement les mêmes matrices que la construction originale dans [$\textit{Invent. Math}$ $\mathbf{53}$ (1979)], mais sans employer les préordres de Kazhdan-Lusztig. Nous montrons aussi que nos modules sont reliés par des matrices unitriangulaires aux modules construits par Clausen dans [$\textit{J. Symbolic Comput.}$ $\textbf{11}$ (1991)]. Ce résultat donne un $\mathbb{C}[x_{1,1},\ldots,x_{n,n}]$-analogue des résultats de Garsia-McLarnan dans [$\textit{Adv. Math.}$ $\textbf{69}$ (1988)].


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Brendon Rhoades

International audience We prove a collection of conjectures due to Abuzzahab-Korson-Li-Meyer, Reiner, and White regarding the cyclic sieving phenomenon as it applies to jeu-de-taquin promotion on rectangular tableaux. To do this, we use Kazhdan-Lusztig theory and a characterization of the dual canonical basis of $\mathbb{C}[x_{11}, \ldots , x_{nn}]$ due to Skandera. Afterwards, we extend our results to analyzing the fixed points of a dihedral action on rectangular tableaux generated by promotion and evacuation, suggesting a possible sieving phenomenon for dihedral groups. Finally, we give applications of this theory to cyclic sieving phenomena involving reduced words for the long elements of hyperoctohedral groups, handshake patterns, and noncrossing partitions.


2015 ◽  
Vol 152 (2) ◽  
pp. 299-326 ◽  
Author(s):  
Fan Qin

We construct the quantized enveloping algebra of any simple Lie algebra of type $\mathbb{A}\mathbb{D}\mathbb{E}$ as the quotient of a Grothendieck ring arising from certain cyclic quiver varieties. In particular, the dual canonical basis of a one-half quantum group with respect to Lusztig’s bilinear form is contained in the natural basis of the Grothendieck ring up to rescaling. This paper expands the categorification established by Hernandez and Leclerc to the whole quantum groups. It can be viewed as a geometric counterpart of Bridgeland’s recent work for type $\mathbb{A}\mathbb{D}\mathbb{E}$.


2011 ◽  
Vol 55 (1) ◽  
pp. 23-51 ◽  
Author(s):  
Susumu Ariki ◽  
Nicolas Jacon ◽  
Cédric Lecouvey

AbstractThe level l Fock space admits canonical bases $\mathcal{G}_{e}$ and $\smash{\mathcal{G}_{\infty}}$. They correspond to $\smash{\mathcal{U}_{v}(\widehat{\mathfrak{sl}}_{e})}$ and $\mathcal{U}_{v}({\mathfrak{sl}}_{\infty})$-module structures. We establish that the transition matrices relating these two bases are unitriangular with coefficients in ℕ[v]. Restriction to the highest-weight modules generated by the empty l-partition then gives a natural quantization of a theorem by Geck and Rouquier on the factorization of decomposition matrices which are associated to Ariki–Koike algebras.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Jean-Gabriel Luque

International audience We investigate the homogeneous symmetric Macdonald polynomials $P_{\lambda} (\mathbb{X} ;q,t)$ for the specialization $t=q^k$. We show an identity relying the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$ and $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. As a consequence, we describe an operator whose eigenvalues characterize the polynomials $P_{\lambda} (\mathbb{X} ;q,q^k)$. Nous nous intéressons aux propriétés des polynômes de Macdonald symétriques $P_{\lambda} (\mathbb{X} ;q,t)$ pour la spécialisation $t=q^k$. En particulier nous montrons une égalité reliant les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$ et $P_{\lambda} (\frac{1-q}{1-q^k}\mathbb{X} ;q,q^k)$. Nous en déduisons la description d'un opérateur dont les valeurs propres caractérisent les polynômes $P_{\lambda} (\mathbb{X} ;q,q^k)$.


Sign in / Sign up

Export Citation Format

Share Document