scholarly journals Minimal factorizations of a cycle: a multivariate generating function

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Philippe Biane ◽  
Matthieu Josuat-Vergès

International audience It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.

2013 ◽  
Vol DMTCS Proceedings vol. AS,... (Proceedings) ◽  
Author(s):  
Ekaterina A. Vassilieva

International audience This paper is devoted to the computation of the number of ordered factorizations of a long cycle in the symmetric group where the number of factors is arbitrary and the cycle structure of the factors is given. Jackson (1988) derived the first closed form expression for the generating series of these numbers using the theory of the irreducible characters of the symmetric group. Thanks to a direct bijection we compute a similar formula and provide the first purely combinatorial evaluation of these generating series. Cet article est dédié au calcul du nombre de factorisations d’un long cycle du groupe symétrique pour lesquels le nombre de facteurs est arbitraire et la structure des cycles des facteurs est donnée. Jackson (1988) a dérivé la première expression compacte pour les séries génératrices de ces nombres en utilisant la théorie des caractères irréductibles du groupe symétrique. Grâce à une bijection directe nous démontrons une formule similaire et donnons ainsi la première évaluation purement combinatoire de ces séries génératrices.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Joel Brewster Lewis ◽  
Alejandro H. Morales

International audience We consider GLn (Fq)-analogues of certain factorization problems in the symmetric group Sn: ratherthan counting factorizations of the long cycle(1,2, . . . , n) given the number of cycles of each factor, we countfactorizations of a regular elliptic element given the fixed space dimension of each factor. We show that, as in Sn, the generating function counting these factorizations has attractive coefficients after an appropriate change of basis.Our work generalizes several recent results on factorizations in GLn (Fq) and also uses a character-based approach.We end with an asymptotic application and some questions.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Gwendal Collet ◽  
Eric Fusy

International audience We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process (reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree. Nous obtenons une formule très simple pour la série génératrice des cartes biparties ayant des bords (trous) de tailles fixées, généralisant certaines expressions obtenues par Eynard dans un livre à paraître. Nous obtenons la formule à partir d'une bijection due à Bouttier, Di Francesco et Guitter, combinée avec un processus (dans l'esprit d'une construction due à Pitman) pour agréger les composantes connexes d'une forêt en un unique arbre.


10.37236/1335 ◽  
1996 ◽  
Vol 4 (2) ◽  
Author(s):  
Richard P. Stanley

A parking function is a sequence $(a_1,\dots,a_n)$ of positive integers such that, if $b_1\leq b_2\leq \cdots\leq b_n$ is the increasing rearrangement of the sequence $(a_1,\dots, a_n),$ then $b_i\leq i$. A noncrossing partition of the set $[n]=\{1,2,\dots,n\}$ is a partition $\pi$ of the set $[n]$ with the property that if $a < b < c < d$ and some block $B$ of $\pi$ contains both $a$ and $c$, while some block $B'$ of $\pi$ contains both $b$ and $d$, then $B=B'$. We establish some connections between parking functions and noncrossing partitions. A generating function for the flag $f$-vector of the lattice NC$_{n+1}$ of noncrossing partitions of $[{\scriptstyle n+1}]$ is shown to coincide (up to the involution $\omega$ on symmetric function) with Haiman's parking function symmetric function. We construct an edge labeling of NC$_{n+1}$ whose chain labels are the set of all parking functions of length $n$. This leads to a local action of the symmetric group ${S}_n$ on NC$_{n+1}$.


2006 ◽  
Vol DMTCS Proceedings vol. AG,... (Proceedings) ◽  
Author(s):  
Florent Hivert ◽  
Jean-Christophe Novelli ◽  
Jean-Yves Thibon

International audience A result of Foata and Schützenberger states that two statistics on permutations, the number of inversions and the inverse major index, have the same distribution on a descent class. We give a multivariate generalization of this property: the sorted vectors of the Lehmer code, of the inverse majcode, and of a new code (the inverse saillance code), have the same distribution on a descent class, and their common multivariate generating function is a flagged ribbon Schur function.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.


1997 ◽  
Vol Vol. 1 ◽  
Author(s):  
Jean-Christophe Novelli ◽  
Igor Pak ◽  
Alexander V. Stoyanovskii

International audience This paper presents a new proof of the hook-length formula, which computes the number of standard Young tableaux of a given shape. After recalling the basic definitions, we present two inverse algorithms giving the desired bijection. The next part of the paper presents the proof of the bijectivity of our construction. The paper concludes with some examples.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Mirkó Visontai

International audience We investigate a conjecture of Haglund that asserts that certain graph polynomials have only real roots. We prove a multivariate generalization of this conjecture for the special case of threshold graphs. Nous étudions une conjecture de Haglund qui affirme que certaines polynômes des graphes ont uniquement des racines réelles. Nous prouvons une généralisation multivariée de cette conjecture pour le cas particulier des graphes à seuil.


Sign in / Sign up

Export Citation Format

Share Document