scholarly journals A simple formula for bipartite and quasi-bipartite maps with boundaries

2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Gwendal Collet ◽  
Eric Fusy

International audience We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process (reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree. Nous obtenons une formule très simple pour la série génératrice des cartes biparties ayant des bords (trous) de tailles fixées, généralisant certaines expressions obtenues par Eynard dans un livre à paraître. Nous obtenons la formule à partir d'une bijection due à Bouttier, Di Francesco et Guitter, combinée avec un processus (dans l'esprit d'une construction due à Pitman) pour agréger les composantes connexes d'une forêt en un unique arbre.

10.37236/3472 ◽  
2014 ◽  
Vol 21 (2) ◽  
Author(s):  
Gwendal Collet ◽  
Éric Fusy

We obtain a very simple formula for the generating function of bipartite (resp. quasi-bipartite) planar maps with boundaries (holes) of prescribed lengths, which generalizes certain expressions obtained by Eynard in a book to appear. The formula is derived from a bijection due to Bouttier, Di Francesco and Guitter combined with a process (reminiscent of a construction of Pitman) of aggregating connected components of a forest into a single tree. The formula naturally extends to $p$-constellations and quasi-$p$-constellations with boundaries (the case $p=2$ corresponding to bipartite maps).


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Philippe Biane ◽  
Matthieu Josuat-Vergès

International audience It is known that the number of minimal factorizations of the long cycle in the symmetric group into a product of k cycles of given lengths has a very simple formula: it is nk−1 where n is the rank of the underlying symmetric group and k is the number of factors. In particular, this is nn−2 for transposition factorizations. The goal of this work is to prove a multivariate generalization of this result. As a byproduct, we get a multivariate analog of Postnikov's hook length formula for trees, and a refined enumeration of final chains of noncrossing partitions.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Marie Albenque ◽  
Jérémie Bouttier

International audience We consider the problem of enumerating planar constellations with two points at a prescribed distance. Our approach relies on a combinatorial correspondence between this family of constellations and the simpler family of rooted constellations, which we may formulate algebraically in terms of multicontinued fractions and generalized Hankel determinants. As an application, we provide a combinatorial derivation of the generating function of Eulerian triangulations with two points at a prescribed distance. Nous considérons le problème du comptage des constellations planaires à deux points marqués à distance donnée. Notre approche repose sur une correspondance combinatoire entre cette famille de constellations et celle, plus simple, des constellations enracinées. La correspondance peut être reformulée algébriquement en termes de fractions multicontinues et de déterminants de Hankel généralisés. Comme application, nous obtenons par une preuve combinatoire la série génératrice des triangulations eulériennes à deux points marqués à distance donnée.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Christopher R. H. Hanusa ◽  
Brant C. Jones

International audience We give a generating function for the fully commutative affine permutations enumerated by rank and Coxeter length, extending formulas due to Stembridge and Barcucci–Del Lungo–Pergola–Pinzani. For fixed rank, the length generating functions have coefficients that are periodic with period dividing the rank. In the course of proving these formulas, we obtain results that elucidate the structure of the fully commutative affine permutations. This is a summary of the results; the full version appears elsewhere. Nous présentons une fonction génératrice qui énumère les permutations affines totalement commutatives par leur rang et par leur longueur de Coxeter, généralisant les formules dues à Stembridge et à Barcucci–Del Lungo–Pergola–Pinzani. Pour un rang précis, les fonctions génératrices ont des coefficients qui sont périodiques de période divisant leur rang. Nous obtenons des résultats qui expliquent la structure des permutations affines totalement commutatives. L'article dessous est un aperçu des résultats; la version complète appara\^ıt ailleurs.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.


2007 ◽  
Vol DMTCS Proceedings vol. AH,... (Proceedings) ◽  
Author(s):  
Frédérique Bassino ◽  
Julien Clément ◽  
J. Fayolle ◽  
P. Nicodème

International audience In this paper, we give the multivariate generating function counting texts according to their length and to the number of occurrences of words from a finite set. The application of the inclusion-exclusion principle to word counting due to Goulden and Jackson (1979, 1983) is used to derive the result. Unlike some other techniques which suppose that the set of words is reduced (<i>i..e.</i>, where no two words are factor of one another), the finite set can be chosen arbitrarily. Noonan and Zeilberger (1999) already provided a MAPLE package treating the non-reduced case, without giving an expression of the generating function or a detailed proof. We give a complete proof validating the use of the inclusion-exclusion principle and compare the complexity of the method proposed here with the one using automata for solving the problem.


2008 ◽  
Vol DMTCS Proceedings vol. AJ,... (Proceedings) ◽  
Author(s):  
Markus Kuba ◽  
Alois Panholzer

International audience We study two enumeration problems for $\textit{up-down alternating trees}$, i.e., rooted labelled trees $T$, where the labels $ v_1, v_2, v_3, \ldots$ on every path starting at the root of $T$ satisfy $v_1 < v_2 > v_3 < v_4 > \cdots$. First we consider various tree families of interest in combinatorics (such as unordered, ordered, $d$-ary and Motzkin trees) and study the number $T_n$ of different up-down alternating labelled trees of size $n$. We obtain for all tree families considered an implicit characterization of the exponential generating function $T(z)$ leading to asymptotic results of the coefficients $T_n$ for various tree families. Second we consider the particular family of up-down alternating labelled ordered trees and study the influence of such an alternating labelling to the average shape of the trees by analyzing the parameters $\textit{label of the root node}$, $\textit{degree of the root node}$ and $\textit{depth of a random node}$ in a random tree of size $n$. This leads to exact enumeration results and limiting distribution results. Nous étudions deux problèmes de dénombrement d'$\textit{arbres alternés haut-bas}$ : par définition, ce sont des arbres munis d'une racine et tels que, pour tout chemin partant de la racine, les valeurs $v_1,v_2,v_3,\ldots$ associées aux nœuds du chemin satisfont la chaîne d'inégalités $v_1 < v_2 > v_3 < v_4 > \cdots$. D'une part, nous considérons diverses familles d'arbres intéressantes du point de vue de l'analyse combinatoire (comme les arbres de Motzkin, les arbres non ordonnés, ordonnés et $d$-aires) et nous étudions pour chaque famille le nombre total $T_n$ d'arbres alternés haut-bas de taille $n$. Nous obtenons pour toutes les familles d'arbres considérées une caractérisation implicite de la fonction génératrice exponentielle $T(z)$. Cette caractérisation nous renseigne sur le comportement asymptotique des coefficients $T_n$ de plusieurs familles d'arbres. D'autre part, nous examinons le cas particulier de la famille des arbres ordonnés : nous étudions l'influence de l'étiquetage alterné haut-bas sur l'allure générale de ces arbres en analysant trois paramètres dans un arbre aléatoire (valeur de la racine, degré de la racine et profondeur d'un nœud aléatoire). Nous obtenons alors des résultats en terme de distribution limite, mais aussi de dénombrement exact.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Lenny Tevlin

International audience This paper contains two results. First, I propose a $q$-generalization of a certain sequence of positive integers, related to Catalan numbers, introduced by Zeilberger, see Lassalle (2010). These $q$-integers are palindromic polynomials in $q$ with positive integer coefficients. The positivity depends on the positivity of a certain difference of products of $q$-binomial coefficients.To this end, I introduce a new inversion/major statistics on lattice walks. The difference in $q$-binomial coefficients is then seen as a generating function of weighted walks that remain in the upper half-plan. Cet document contient deux résultats. Tout d’abord, je vous propose un $q$-generalization d’une certaine séquence de nombres entiers positifs, liés à nombres de Catalan, introduites par Zeilberger (Lassalle, 2010). Ces $q$-integers sont des polynômes palindromiques à $q$ à coefficients entiers positifs. La positivité dépend de la positivité d’une certaine différence de produits de $q$-coefficients binomial.Pour ce faire, je vous présente une nouvelle inversion/major index sur les chemins du réseau. La différence de $q$-binomial coefficients est alors considérée comme une fonction de génération de trajets pondérés qui restent dans le demi-plan supérieur.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Christopher J. Hillar ◽  
Lionel Levine ◽  
Darren Rhea

International audience We study equations in groups $G$ with unique $m$-th roots for each positive integer $m$. A word equation in two letters is an expression of the form$ w(X,A) = B$, where $w$ is a finite word in the alphabet ${X,A}$. We think of $A,B ∈G$ as fixed coefficients, and $X ∈G$ as the unknown. Certain word equations, such as $XAXAX=B$, have solutions in terms of radicals: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, while others such as $X^2 A X = B$ do not. We obtain the first known infinite families of word equations not solvable by radicals, and conjecture a complete classification. To a word w we associate a polynomial $P_w ∈ℤ[x,y]$ in two commuting variables, which factors whenever $w$ is a composition of smaller words. We prove that if $P_w(x^2,y^2)$ has an absolutely irreducible factor in $ℤ[x,y]$, then the equation $w(X,A)=B$ is not solvable in terms of radicals. Nous étudions des équations dans les groupes $G$ avec les $m$-th racines uniques pour chaque nombre entier positif m. Une équation de mot dans deux lettres est une expression de la forme $w(X, A) = B$, où $w$ est un mot fini dans l'alphabet ${X, A}$. Nous pensons $A, B ∈G$ en tant que coefficients fixes, et $X ∈G$ en tant que inconnu. Certaines équations de mot, telles que $XAXAX=B$, ont des solutions en termes de radicaux: $X = A^-1/2(A^1/2BA^1/2)^1/3A^-1/2$, alors que d'autres tel que $X^2 A X = B$ ne font pas. Nous obtenons les familles infinies d'abord connues des équations de mot non solubles par des radicaux, et conjecturons une classification complété. Á un mot $w$ nous associons un polynôme $P_w ∈ℤ[x, y]$ dans deux variables de permutation, qui factorise toutes les fois que $w$ est une composition de plus petits mots. Nous montrons que si $P_w(x^2, y^2)$ a un facteur absolument irréductible dans $ℤ[x, y]$, alors l'équation $w(X, A)=B$ n'est pas soluble en termes de radicaux.


2010 ◽  
Vol DMTCS Proceedings vol. AN,... (Proceedings) ◽  
Author(s):  
Sergey Kitaev ◽  
Jeffrey Remmel

International audience A poset is said to be (2+2)-free if it does not contain an induced subposet that is isomorphic to 2+2, the union of two disjoint 2-element chains. In a recent paper, Bousquet-Mélou et al. found, using so called ascent sequences, the generating function for the number of (2+2)-free posets: $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. We extend this result by finding the generating function for (2+2)-free posets when four statistics are taken into account, one of which is the number of minimal elements in a poset. We also show that in a special case when only minimal elements are of interest, our rather involved generating function can be rewritten in the form $P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$ where $p_n,k$ equals the number of (2+2)-free posets of size $n$ with $k$ minimal elements. Un poset sera dit (2+2)-libre s'il ne contient aucun sous-poset isomorphe à 2+2, l'union disjointe de deux chaînes à deux éléments. Dans un article récent, Bousquet-Mélou et al. ont trouvé, à l'aide de "suites de montées'', la fonction génératrice des nombres de posets (2+2)-libres: c'est $P(t)=∑_n≥ 0 ∏_i=1^n ( 1-(1-t)^i)$. Nous étendons ce résultat en trouvant la fonction génératrice des posets (\textrm2+2)-libres rendant compte de quatre statistiques, dont le nombre d'éléments minimaux du poset. Nous montrons aussi que lorsqu'on ne s'intéresse qu'au nombre d'éléments minimaux, notre fonction génératrice assez compliquée peut être simplifiée en$P(t,z)=∑_n,k ≥0 p_n,k t^n z^k = 1+ ∑_n ≥0\frac{zt}{(1-zt)^n+1}∏_i=1^n (1-(1-t)^i)$, où $p_n,k$ est le nombre de posets (2+2)-libres de taille $n$ avec $k$ éléments minimaux.


Sign in / Sign up

Export Citation Format

Share Document