scholarly journals EXPERIMENTAL STUDY OF MICRO SILICA BEHAVIOR AND ITS EFFECT ON IRAQI CEMENT PERFORMANCE BY USING X-RAY FLUORESCENCE ANALYSIS

2020 ◽  
Vol 53 (2E) ◽  
pp. 62-73
Author(s):  
Amel Assi

The cement slurry is a mixture of cement, water and additives which is established at the surface for injecting inside hole. The compressive strength is considered the most important properties of slurry for testing the slurry reliability and is the ability of slurry to resist deformation and formation fluids. Compressive strength is governed by the sort of raw materials that include additives, cement structure, and exposure circumstances. In this work, we use micro silica like pozzolanic materials. Silica fume is very fine noncrystalline substantial. Silica fume can be utilized like material for supplemental cementations for increasing the compressive strength and durability of cement. Silica fume has very fine particles size less than 1 micron and by an average of about 0.1 microns, about 100 times slighter than particles of cement. We are adding 0%, 5%, 10%, 15%, 20% and 25% micro silica by wt. of cement. The results showed that adding micro silica enhance the performance of Iraqi cement but also leads to a slight decrease in thickening time. To avoid this problem, super plasticizer is used to make the process of cement pumping more easily, in other words, increase thickening time and increase compressive strength. The experimental work showed that adding micro silica leads to reduce free water and this property is very important through horizontal drilling. X-ray fluorescence technique delivers beneficial elemental information about the chemical structure of Iraqi cement to help us use it without causing damage through the cementing job. In this paper, some outlines of the XRF device and its main applications are presented. By using X-ray fluorescence analysis, we detect the problem of Iraqi cement and solve it in this paper to use it at cementing jobs in the Iraqi field instead of using imported cement.

2021 ◽  
Vol 22 (1) ◽  
pp. 1-13
Author(s):  
Amel Habeeb Assi ◽  
Faleh H.M. Almehdawi

This effort is related to describe and assess the performance of the Iraqi cement sample planned for oil well-cementing jobs in Iraq. In this paper, major cementing properties which are thickening time, compressive strength, and free water in addition to the rheological properties and filtration of cement slurry underneath definite circumstances are experimentally tested. The consequences point to that the Iraqi cement after special additives encounter the requests of the API standards and can consequently is used in cementing jobs for oil wells. At this research, there is a comparative investigation established on experimental work on the effectiveness of some additives that considered as waste materials which are silica fume, bauxite, and glass powder, and other conventional additives which are: (SCR -100 Retarder, HR-5, FWCA, Hollow Glass Spheres (HGS) and Halad-9) that currently used in our fields on local Iraqi cement and putting foreign cement results as a governor. Chemical analysis for Iraqi cement, imported cement, and waste materials samples was determined using the X-ray fluorescence (XRF) technique and found minor differences in composition between those samples and depending on the results of X-ray, we selecting the appropriate additives to prepare cement slurry samples. The X-ray fluorescence (XRF) results show that Iraqi Cement has a low value of silica which is about 18.63% while Omani cement about 37.58%. This research examined the potential of micro silica, bauxite, and waste glass powder to produce sustainable cement slurry. The results showed that adding micro silica and bauxite enhances the performance of Iraqi cement but also leads to a slight decrease in thickening time. To avoid this problem, Superplasticizer is used to make the process of cement pumping more easily, in other words, increase thickening time and increase compressive strength. Furthermore, adding glass powder increase the value of compressive strength. Both additives (waste and conventional) are used for the slurry design for achieving better slurry properties, but waste additives increase and enhance Iraqi cement performance than conventional additives, in other words, making it more effective than commercial cement. Depending on the results of the compressive strength test, the optimal concentration of the waste materials used in this research was found, and then the optimal concentration was used to prepare cement samples. The results showed that the use of waste materials to prepare cement slurry is a promising way to improve the efficiency of cement work and to reduce the negative environmental impact resulting from the industry. The results of the program CemCADE proved to be the sample A and C showed good performance through high cement bonding and ideal distribution of fluids designed to accomplish the cementing process.


2021 ◽  
pp. 147-156
Author(s):  
Ali M. Hadi ◽  
Ayad A. Al-Haleem

Cement is a major component in oil and gas drilling operations that is used to maintain the integrity of boreholes by preventing the movement of formation fluids through the annular space and outside the casing. In 2019, Iraq National Oil Company ordered all international oil and gas companies which are working in Iraq to use Iraqi cement (made in Iraq) in all Iraqi oil fields; however, the X-ray fluorescence (XRF) and compressive strength results in this study show that this cement is not matching with American Petroleum Institute (API) standards. During this study, barolift was used to improve the properties of Iraqi cement used in oil wells at high pressure and high temperature (HPHT). Barolift (1 g) was added to cement admixture to evaluate its influence on improving the performance of cement, mainly related to the property of toughness.  Primarily, the quality and quantity of cement contents were determined using X-ray fluorescence. Experiments were conducted to examine the characteristics of the base cement and the cement system containing 1g of barolift, such as thickening time, free water, compressive strength, and porosity. X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) were conducted for analyzing the microstructure of cement powder. The experimental results showed that barolift acted as a retarder and improved the thickening time, slightly increased the free water, enhanced the mechanical properties, reduced the porosity, and aided in scheming new cement slurry to withstand the HPHT conditions. Microstructure analysis showed that barolift particles blocked the capillaries by filling cement spaces and, thus, a denser and stricter cement network was achieved.


2012 ◽  
Vol 174-177 ◽  
pp. 751-756
Author(s):  
Zi Fang Xu ◽  
Ming Xu Zhang ◽  
Jin Hua Li

In order to notably improve the mechanical properties and durability of low-grade cement-based material, superfine silica fume was used to modify the cement-based composite based on special perfomance and effects of nano powder. The mechanical performance and durability were investigated.Then the phase compositions,microstructure and morphologies of as-received cement-based composite were studied by X-ray Diffractometer、TGA-DTA and SEM. The results show that: the best formula of raw materials is 1:1:0.025:0.015, and hydration can be accelerated and increasing of hydration products is observed after modification. In the hardened cement matrix, microstructure is very compacted and C-S-H gel forms densed structure, so the structure defect is notably reduced. This means that both strength and durability of cement-based composite are notably improved by the addition of superfine silica fume.


2019 ◽  
Vol 828 ◽  
pp. 14-17
Author(s):  
Malgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of utilization of fly and bottom ash from combustion of biomass for the produce of cement mortars has been presented. Currently, this waste are deposited in industrial waste landfills. The chemical composition of waste materials was determined using X-ray fluorescence (spectrometer ARL Advant 'XP). ). In the studies sand was replaced by mix of fly and bottom ash from the combustion of biomass in an amount of 10-30% by weight of cement CEM I 42.5 R (Cemex). The obtained cement mortar concrete were subjected to microscopic examination (LEO Electron Microscopy Ltd.) and their compressive strength (PN-EN-196-1), frost resistance (PN-EN 1015-11 and PN-B -04500 ) and absorbability (PN-85/B-04500) were identified. The obtained results showed, the replacement of the cement by mix ashes from combustion of biomass reduce consumption of raw materials and will have a good influence on the environment.


2011 ◽  
Vol 89 (7) ◽  
pp. 845-853 ◽  
Author(s):  
Sadok Letaief ◽  
Wendy Pell ◽  
Christian Detellier

The clay mineral kaolinite was used as support of gold nanoparticles for heterogeneous catalysis of oxidation reactions, particularly of carbon monoxide oxidation. The application of clay minerals in the preparation of new functional materials provides an alternative approach for the use of these abundant raw materials. To improve the physicochemical properties of kaolinite, as well as to ensure a strong immobilization of the adsorbed species, kaolinite was functionalized by grafting 2-amino-2-methyl-1,3-propanediol on the internal and external surfaces of the octahedral sheets by reaction with the aluminol groups. Gold nanoparticles were then deposited on the external surfaces of the fine particles of the functionalized kaolinite. The resulting gold kaolinite nanohybrid material was characterized by various physicochemical techniques. X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry confirmed that gold was effectively reduced to the metallic state during adsorption onto the external surfaces of the modified kaolinite. The gold nanoparticles have a narrow size distribution: more than 88% are less than 4 nm in diameter. Gold nanoparticles deposited on kaolinite catalyze the electro-oxidation of carbon monoxide in alkaline solution at room temperature.


1974 ◽  
Vol 18 ◽  
pp. 619-631 ◽  
Author(s):  
T. G. Dzubay ◽  
R. O. Nelson

AbstractA procedure is described for making self absorption corrections for x-ray fluorescence analysis of ambient air aerosols which are collected in two size ranges with a dichotomous sampler. Calculations for fine particles are based on the assumption of a uniform layer of accumulated deposit which has an exponentially decreasing depth profile within a membrane filter. Coarse particles are treated as spheres with a log normal mass distribution which is subject to modification by the sampling device. An average attenuation and the associated uncertainty is deduced for coarse particles by considering a wide variety of possible chemical compositions.


2018 ◽  
Vol 879 ◽  
pp. 161-165
Author(s):  
Varinthorn Boonyaroj ◽  
Sirichai Saramanus

This research aims to fabrication and evaluation the properties of cement reinforcement made from Panicumrepens. The research is divided into two parts are as follows; to determined the optimal ratio selection, and to compare the properties of Panicumrepens reinforced cement, and without grasses by using the optimal ratio. The raw materials used in this research were cut in length of 2.0-2.5 cm. In this research was determined the properties of Panicumrepens reinforced cement in terms of bulk density, water absorption, and compressive strength. The influence of fibers soaked with 5% of sodium hydroxide concentration was also conducted in this research. The surface structure and chemical characteristics of fibers used to produce reinforced cement were observed by using scanning electron microscope (SEM), and energy dispersive x-ray spectrometer (EDS), respectively. Moreover, relationships of information collected from this research were concerned. Furthermore, the addition of Panicumrepens fibers could improve the flexural strength of composite materials.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Ping Jiang ◽  
Yewen Chen ◽  
Lin Zhou ◽  
Tianhao Mao ◽  
Wei Wang ◽  
...  

This study investigated the unconfined compressive strength change law of cement modified slurries (CMS) under different curing ages. We conducted unconfined compressive strength tests using slurry and cement as raw materials. The cement contents were 5%, 10%, 15%, 20%, and 25%. The curing ages were 7, 14, 28, 56, 90, 120, 150, and 180 d. A time effect model of CMS strength was established based on the measured UCS strength-curing age and the strength-cement content curves. The test results proved that the UCS of the CMS increased significantly with an increase in the curing age, and after 90 days, the UCS gradually increased to a fixed value. The time effect model better characterized the relationship between the UCS of the CMS and the curing age and the cement content, as the predicted value had a high correlation with the measured value. We conducted scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and X-ray diffraction (XRD) tests to analyze the microstructure and chemical composition of the CMS. The microscopic test results demonstrated that the increase of cement content and curing age increased the amount of gelling substances in the CMS and made the overall structure more compact, thereby increasing its macro strength.


2012 ◽  
Vol 50 (4) ◽  
pp. 345-351
Author(s):  
S. Tanaka ◽  
S. Nagataki ◽  
E. Sakai ◽  
H. Jinnai

Sign in / Sign up

Export Citation Format

Share Document