scholarly journals EFFECT OF SINTERING AND CORDIERITE ADDITIVES ON THE PHYSICAL AND MECHANICAL PROPERTIES OF MULLITE BASED CERAMICS PREPARED FROM IRAQI RAW MATERIALS

2020 ◽  
Vol 53 (2F) ◽  
pp. 49-64
Author(s):  
Mojahid Najim

Mullite and cordierite are produced in the laboratory from Iraqi raw materials, have been crushed individually to obtain dense ceramic bodies to a particle size smaller than 45µ. Five mixtures of cordierite and mullite have been prepared in which cordierite has been added to mullite with the percentages of 30, 40, 50, 60, and 70 %. One hundred and twenty disk samples have been prepared using the semi-dry pressing method, with the pressure of 1000kg/cm2. The samples were dried and fired at different temperatures of 1300, 1350, 1400, and 1450 oC, with a soaking time of 2h. Physical evaluation tests (volume shrinkage, water absorption, apparent porosity, and bulk density) in addition to mechanical evaluation tests (compressive strength) have been performed. Samples fired at 1400 oC showed the best rates for the evaluation tests in general, in which the apparent porosity and water absorption for the samples were very low while the rates of density and compressive strength were high. The characteristics of samples fired at 1450 oC were overall poor while samples containing 60 and 70 % cordierite were melted. The best samples in this investigation were proven to be the ones containing 30% cordierite and 70% mullite while samples made out of 40% cordierite and 60% mullite show good mechanical and physical characteristics. The best ideal sample was the one fired at 1400 oC and contained 30% cordierite and 70% mullite.

2021 ◽  
pp. 1-11
Author(s):  
Bernard Missota Priso Dickson ◽  
Claudine Mawe Noussi ◽  
Louise Ndongo Ebongue ◽  
Joseph Dika Manga

This study focuses on the evaluation of the physical and mechanical properties of a porous material based on a mixture of powder (Volcanic ash /Aluminum Beverage Cans) and a solution of phosphoric acid. Volcanic ash (VA) use was collected in one of the quarries of Mandjo (Cameroon coastal region), crushed, then characterized by XRF, DRX, FTIR and named MaJ. The various polymers obtained are called MaJ0, MaJ2.5, MaJ5, MaJ7.5 and MaJ10 according to the mass content of the additions of the powder from the aluminum beverage cans (ABCs). The physical and mechanical properties of the synthetic products were evaluated by determining the apparent porosity, bulk density, water absorption and compressive strength. The results of this study show that the partial replacement of the powder of VA by that of ABC leads to a reduction in the compressive strength (5.9 - 0.8 MPa) and bulk density (2.56 – 1.32 g/cm3) of the polymers obtained. On the other hand, apparent porosity, water absorption and pore formation within the polymers increases with addition of the powder from the beverage cans. All of these results allow us to agree that the ABCs powder can be used as a blowing agent during the synthesis of phosphate inorganic polymers.


2018 ◽  
Vol 32 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Jagadeesh Bhattarai ◽  
Dol Bahadur Ghale ◽  
Yagya Prasad Chapagain ◽  
Narendra Bahadur Bohara ◽  
Nijan Duwal

Physical and mechanical properties of seven ancient clay brick samples of Kathmandu valley consisting of quartz, feldspars, spinel, margarite, muscovite type of mica mineral and hematite were studied using ASTM standards. All the brick samples used in this study have the water absorption, apparent porosity and bulk density in the range of 10-28 percent, 17-33 percent and 1.2-1.8 g/cm3, respectively, while the compressive strength of all the brick samples is found to be in the range of 5-23 MPa. The bulk density of the tile samples is found to be increased with decreasing the water absorption and apparent porosity. The compressive strength of all the clay brick samples can be correlated with their physical properties. Consequently, durability of the ancient bricks is directly influenced by their physical properties of water absorption, apparent porosity and bulk density.


2018 ◽  
Vol 766 ◽  
pp. 241-245
Author(s):  
Rattaphon Kantajan ◽  
Soravich Mulinta

The purpose of this study was to study and characterize the properties of physical – mechanical for clay bricks. The raw materials used in the study are from local sources. They are Sri Khum red clay, dolomite and cullet. The component ratio of clay brick as an addition Sri Khum red clay 50–90 %, foaming agent (dolomite and cullet) 10–50%. The characterization of raw material was analyzed by particle analyzer, X-ray fluorescence (XRF) and X-ray diffraction (XRD). The shrinkage, water absorption and compressive strength of clay brick were tested. The results showed that the properties of clay bricks after firing at temperature at 900°C were studied. The Sri Khum red clay 80% and cullet 20% had a shrinkage of 6.95%, water absorption of 20.4% and compressive strength of 182 kg/cm2. The physical – mechanical of clay brick achieved the requirements of Thai industrial standard (TIS 77-2545).


Author(s):  
V. A. Vlasov ◽  
M. A. Semenovykh ◽  
N. K. Skripnikova ◽  
V. V. Shekhovtsov

The paper analyzes the Russian and foreign research into the use of nonstandard raw materials in the production of constructional anorthite ceramics. The raw materials with different chemical composition are investigated. It is shown that the use of nonstandard raw materials in the ceramic mixture makes it possible to obtain constructional products with 43.1 MPa compressive strength, 2150 kg/m3 density, about 7 % water absorption and frost resistance that meets the requirements of regulatory documents. The physical and mechanical properties are obtained due to the anorthite phase containing in the composition of end ceramic products, which is confirmed by the X-ray phase and microscopic analyses.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 360
Author(s):  
Pauls P. Argalis ◽  
Laura Vitola ◽  
Diana Bajare ◽  
Kristine Vegere

A major problem in the field of adsorbents is that binders (kaolin clay, bentonite) introduced to bind zeolites and ensure the needed mechanical strength, are not able to sorb gases like CO2 and N2, and decrease the overall adsorption capacity. To solve this problem, one of the pathways is to introduce a binder able to sorb such gases. Thus, in this study, the physical and mechanical properties of a novel binder based on metakaolin and its composite with zeolite 4A in the granular form were studied. Metakaolin was used as a precursor for alkali-activated binder, which was synthesized using an 8M NaOH activation solution. Raw materials were characterized using granulometry, X-ray diffraction (XRD), and differential thermal analysis (DTA); and final products were characterized using density measurements, a compressive strength test, XRD, Brunauer–Emmett–Teller (BET) analysis, and scanning electron microscopy (SEM). Alkali-activated metakaolin was found to be efficient as a binding material when data for morphological properties were analyzed. A relationship was observed—by increasing the liquid-to-solid ratio (L/S), compressive strength decreased. Zeolite granule attrition was higher than expected: 2.42% and 4.55% for ZG-0.8, 3.64% and 5.76% for ZG-1.0, and 2.73% and 4.85% for ZG-1.2, measured at 4 and 5 atmospheres, respectively.


2013 ◽  
Vol 850-851 ◽  
pp. 847-850 ◽  
Author(s):  
Lin Chao Dai

In order to study the coal and gas outburst similar simulation experiment, coal similar material was made up based on the similarity theory. Based on the previous similar material study, the cement, sand, water, activated carbon and coal powder was selected as the raw material of similar material. Meanwhile similar material matching program with 5 factors and 6 levels was designed by using Uniform Design Method. And the physical and mechanical properties of the similar material compressive strength was measured under different proportions circumstances. The relationship between similar material and the raw materials was analyzed. The results show that choosing different materials can compound different similar materials with different requirements. And the water-cement ratio plays a decisive influence on the compressive strength of similar material. The compressive strength of similar material decreases linearly when the water-cement ratio increases.


2019 ◽  
Vol 16 (33) ◽  
pp. 823-840
Author(s):  
M. K. TARABAI ◽  
S. G. de AZEVEDO

This paper discusses a possible solution regarding the final disposal of sludge from Sanitary Sewage Treatment Stations (ET), aiming at environmental preservation. The solid waste generated after the wastewater treatment processes is highly contaminating and detrimental to the area in which it is deposited. Given this, the use of sludge with the application of reuse techniques becomes pertinent, both from the economic point of view and from the ecological point of view. By replacing the use of aggregates from mineral deposits, the main clay raw material in the manufacture of ceramic products (Vieira, 2000), by the treated sludge of WWTP we will save on the sources of granular materials. Aiming its reintegration to the production cycle through the introduction of sludge as raw material incorporated in the ceramic mass in the manufacture of hollow bricks, the viability of use was verified through performance analysis, compared to the control brick made of pottery, without the addition of sludge. Specimens were prepared with three types of samples: 90% clay and 10% sludge; 80% clay and 20% sludge; 70% clay and 30% sludge. Mass loss, water absorption index and compressive strength tests were performed. As for the tests, the specimens with 10% and 20% of sludge were the ones that had better adaptation to the technical requirements, but because it is a larger volume of the residue for the application of reuse techniques, the brick with 20% sludge dosage. is the most suitable. NBR7.171, November 1992: Ceramic Block for masonry; Specification NBR 6.461, June 1983: Masonry Ceramic Block - Compressive Strength Check: Test Method; NBR 8.947, November 1992: Ceramic Tile- Determination of Mass and Water Absorption: Test Method. As for the tests, the specimen with 20% of sludge was the one that had the best adaptation to technical and environmental requirements. The present article approaches a possible solution regarding the destination of the sludge coming from Sanitary Sewage Treatment Stations, aiming at environmental preservation. Aiming at its reintegration into the productive cycle through applications of reuse techniques, the sludge became raw material when the ceramic mass was incorporated into the brick fabrication. Three types of samples were elaborated: 90% of clay and 10% of mud; 80% clay and 20% sludge; 70% clay and 30% sludge. As for the tests, the test specimen with 20% of sludge was the one that had more adequacy to the technical and environmental requirements.


2020 ◽  
Vol 120 ◽  
pp. 126-133
Author(s):  
V. V. Martynenko ◽  
Yu. A. Krakhmal ◽  
K. I. Kushchenko ◽  
T. G. Tishina

Lightweight materials are widely used in industry for thermal insulation of various thermal units. The choice of lightweight material depends on the specific conditions of service. For the lining of high-temperature units operating in reducing environments, alumina lightweight products are used that contain a minimum amount of Fe2O3 impurities and free (unbound in compounds) SiO2. In JSC “URIR named after A. S. Berezhnoy” a technology of alumina lightweight products of grades KLA-1.1 and KLA-1.3 by a semi-dry pressing method with an application temperature of up to 1550 °C has been developed. These products are made from a mixture of ground and no-milled γ-form alumina of grade 0 and α-form alumina of grade S with additives of pitch coke and chalk. The work purpose was improvement of the alumina lightweight products technology and search for new alternative raw materials along with the currently used alumina grade S. The properties dependence of alumina lightweight products, obtained by the semi-dry pressing method, on the type of alumina α-form, was investigated. As a result of the studies, it was found that, for the manufacture of alumina lightweight products of grades KLA-1.1 and KLA-1.3 by the semi-dry pressing method, alumina grades N and NR can be used as an alternative alumina-containing raw material along with alumina grade S. The phase composition of alumina lightweight products of grades KLA-1.1 and KLA-1.3, which are manufactured using alumina grades S, N and NR, was represented mainly by corundum and calcium hexaluminate. The alumina lightweight products, which were manufactured using alumina grades S, N and NR, were characterized by similar high properties and correspond the technical requirements for grades KLA-1.1 and KLA-1.3.


2018 ◽  
Vol 777 ◽  
pp. 465-470
Author(s):  
Sutas Janbuala ◽  
Mana Eambua ◽  
Arpapan Satayavibul ◽  
Watcharakhon Nethan

The objective of this study was to recycle powdered marble dust to improve mechanical properties and thermal conductivity of lightweight clay bricks. Varying amounts of powdered marble dust (10, 20, 30, and 40 vol.%) were added to a lightweight clay brick at the firing temperatures of 900, 1000, and 1100 °C. When higher quantities of powdered marble dust were added, the values of porosity and water absorption increased while those of thermal conductivity and bulk density decreased. The decrease in apparent porosity and water absorption were also affected by the increase in firing temperature. The most desirable properties of the clay bricks were obtained for the powdered marble dust content of 40 vol.% and firing temperature 900 °C: bulk density of 1.20 g/cm3, compressive strength 9.2 MPa, thermal conductivity 0.32 W/m.K, and water absorption 22.5%.


2017 ◽  
Vol 751 ◽  
pp. 521-526 ◽  
Author(s):  
Jiraphorn Mahawan ◽  
Somchai Maneewan ◽  
Tanapon Patanin ◽  
Atthakorn Thongtha

This research concentrates to the effect of changing sand proportion on the physical, mechanical and thermal properties of building wall materials (Cellular lightweight concrete). The density, water absorption and compressive strength of the 7.0 cm x 7.0 cm x 7.0 cm concrete sample were studied. It was found that there are an increase of density and a reduction of water absorption with an increase of sand content. The higher compressive strength can be confirmed by higher density and lower water absorption. The physical and mechanical properties of lightweight concrete conditions conformed to the Thai Industrial Standard 2601-2013. The phases of CaCO3 and calcium silicate hydrate (C-S-H) in the material indicate an important factor in thermal insulating performance.


Sign in / Sign up

Export Citation Format

Share Document