scholarly journals Physical and Mechanical Properties of a Porous Material Obtained by Low Replacement of Volcanic Ash by Aluminum Beverage Cans

2021 ◽  
pp. 1-11
Author(s):  
Bernard Missota Priso Dickson ◽  
Claudine Mawe Noussi ◽  
Louise Ndongo Ebongue ◽  
Joseph Dika Manga

This study focuses on the evaluation of the physical and mechanical properties of a porous material based on a mixture of powder (Volcanic ash /Aluminum Beverage Cans) and a solution of phosphoric acid. Volcanic ash (VA) use was collected in one of the quarries of Mandjo (Cameroon coastal region), crushed, then characterized by XRF, DRX, FTIR and named MaJ. The various polymers obtained are called MaJ0, MaJ2.5, MaJ5, MaJ7.5 and MaJ10 according to the mass content of the additions of the powder from the aluminum beverage cans (ABCs). The physical and mechanical properties of the synthetic products were evaluated by determining the apparent porosity, bulk density, water absorption and compressive strength. The results of this study show that the partial replacement of the powder of VA by that of ABC leads to a reduction in the compressive strength (5.9 - 0.8 MPa) and bulk density (2.56 – 1.32 g/cm3) of the polymers obtained. On the other hand, apparent porosity, water absorption and pore formation within the polymers increases with addition of the powder from the beverage cans. All of these results allow us to agree that the ABCs powder can be used as a blowing agent during the synthesis of phosphate inorganic polymers.

2018 ◽  
Vol 32 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Jagadeesh Bhattarai ◽  
Dol Bahadur Ghale ◽  
Yagya Prasad Chapagain ◽  
Narendra Bahadur Bohara ◽  
Nijan Duwal

Physical and mechanical properties of seven ancient clay brick samples of Kathmandu valley consisting of quartz, feldspars, spinel, margarite, muscovite type of mica mineral and hematite were studied using ASTM standards. All the brick samples used in this study have the water absorption, apparent porosity and bulk density in the range of 10-28 percent, 17-33 percent and 1.2-1.8 g/cm3, respectively, while the compressive strength of all the brick samples is found to be in the range of 5-23 MPa. The bulk density of the tile samples is found to be increased with decreasing the water absorption and apparent porosity. The compressive strength of all the clay brick samples can be correlated with their physical properties. Consequently, durability of the ancient bricks is directly influenced by their physical properties of water absorption, apparent porosity and bulk density.


2018 ◽  
Vol 777 ◽  
pp. 465-470
Author(s):  
Sutas Janbuala ◽  
Mana Eambua ◽  
Arpapan Satayavibul ◽  
Watcharakhon Nethan

The objective of this study was to recycle powdered marble dust to improve mechanical properties and thermal conductivity of lightweight clay bricks. Varying amounts of powdered marble dust (10, 20, 30, and 40 vol.%) were added to a lightweight clay brick at the firing temperatures of 900, 1000, and 1100 °C. When higher quantities of powdered marble dust were added, the values of porosity and water absorption increased while those of thermal conductivity and bulk density decreased. The decrease in apparent porosity and water absorption were also affected by the increase in firing temperature. The most desirable properties of the clay bricks were obtained for the powdered marble dust content of 40 vol.% and firing temperature 900 °C: bulk density of 1.20 g/cm3, compressive strength 9.2 MPa, thermal conductivity 0.32 W/m.K, and water absorption 22.5%.


2016 ◽  
Vol 865 ◽  
pp. 201-205 ◽  
Author(s):  
Michaela Fiedlerová ◽  
Rostislav Drochytka ◽  
Pavel Dohnálek

This paper deals with the evaluation of a partial replacement of cement by Czech fly ash in high strength floor screed in dosage of 10, 20, 30 and 40% and the assessment of the physical-mechanical properties such as compressive strength, water absorption and bulk density. Used fly ashes are from power plants Počerady, Opatovice and Tušimice. The experimental study showed that the use of Czech fly ash improves the compressive strength. The bulk density decreases and therefore water absorption increases. Reference samples become clearly the lowest compressive strength at age of 28 days (fc28). A significant increase in compressive strength (fc28) was observed in case of mix design with addition of 10% and 20% of fly ash Tušimice (10%ETU, 20%ETU) and 20% and 30% of fly ash Počerady (20%EPC, 30%EPC). The addition of 20% of fly ash Počerady (20%EPC) has noticeable influence on short-term compressive strength (measured at the age of 24 hours).


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Haiming Chen ◽  
Yangchen Xu ◽  
Donglei Zhang ◽  
Lingxia Huang ◽  
Yuntao Zhu ◽  
...  

This work is aimed to study the possibility of recycling plastic waste (polypropylene (PP)) as aggregate instead of sand in the manufacturing of mortar or concrete. For this, an experimental study was carried out to evaluate the influence of nano-SiO2 and recycled PP plastic particles' content on physical, mechanical, and shrinkage properties and microstructure of the mortars with recycled PP plastic particles. The sand is substituted with the recycled PP plastic particles at dosages (0%, 20%, 40%, and 60% by volume of the sand). The nano-SiO2 content is 5% by weight of cement. The physical (porosity, water absorption, and density), mechanical (compressive and flexural strength) and shrinkage properties of the mortars were evaluated, and a complementary study on microstructure of the interface between cementitious matrix and PP plastic particles was made. The measurements of physical and mechanical properties showed that PP-filled mortar had lower density and better toughness (higher ratio of flexural strength to compressive strength). However, the compressive strength and flexural strength of PP-filled mortar is reduced, and the porosity, water absorption, autogenous shrinkage, and dry shrinkage increased as compared to normal cement mortar. The addition of nano-SiO2 reduced the porosity, water absorption, and drying shrinkage of PP-filled mortar and effectively improved the mechanical properties, but increased its autogenous shrinkage. A microscopic study of the interfacial zone (plastic-binder) has shown that there is poor adhesion between PP plastic particles and cement paste. From this work, it is found that recycled PP plastic waste has a great potential to be a construction material. It can be used as partial replacement of natural aggregates instead.


2020 ◽  
Vol 1010 ◽  
pp. 194-199
Author(s):  
Hamdan Yahya ◽  
Aspaniza Ahmad ◽  
Ismail Ibrahim

The effect of Al2O3 to the properties of whiteware porcelain such as water absorption, bulk density, flexural strength and crystalline phases were studied systematically. The result shows that the addition of alumina at maximum 5 wt.% in porcelain bodies increased the flexural strength of the fired bodies which can reach 55.5 MPa, 30% higher than 0.0% alumina content. However, slight decrease in the other physical and mechanical properties was observed with Al2O3 addition higher than 5 wt.%, which is believed to be due to increased corundum phase compared to mullite phase in porcelain body.


2010 ◽  
Vol 2 (6) ◽  
pp. 50-55
Author(s):  
Marija Vaičienė ◽  
Jurgita Malaiškienė

Binder material is the most expensive raw component of concrete; thus, scientists are looking for cheaper substitute materials. This paper shows that when manufacturing, a part of the binder material of expanded-clay lightweight concrete can be replaced with active filler. The conducted studies show that technogenic – catalyst waste could act as similar filler. The study also includes the dependence of the physical and mechanical properties of expanded-clay lightweight concrete on the concrete mixture and the chemical composition of the samples obtained. Different formation and composition mixtures of expanded-clay lightweight concrete were chosen to determine the properties of physical-mechanical properties such as density, water absorption and compressive strength.


2018 ◽  
Vol 923 ◽  
pp. 84-88
Author(s):  
Sittiporn Punyanitya ◽  
Rungsarit Koonawoot ◽  
Anucha Ruksanti ◽  
Sakdiphon Thiensem ◽  
Anirut Raksujarit

To study the effect of addition purified cow bone (CB) powder (20, 30, 40 and 50 wt%) in slurry suspension of retrograded rice starch (RRS). The composite sponges were used as in bone repair. The RRS-CB composite sponges were prepared from the mixture of RRS, CB and additive into distill water. The prepared samples were characterized including SEM, XRD, physical and mechanical properties. The results of optimized condition have shown the samples of 40 wt% CB that had the swelling rate as 102± 0.01%, area of expansion was 20 ± 0.03 % for 72 hours and the compressive strength was 64.35±0.05KPa. In addition, it was found that this content resulted in sufficient soft porous material, foldable by hand and self recovered body.


Author(s):  
Vu-An Tran

This research investigates the physical and mechanical properties of mortar incorporating fly ash (FA), which is by-product of Duyen Hai thermal power plant. Six mixtures of mortar are produced with FA at level of 0%, 10%, 20%, 30%, 40%, and 50% (by volume) as cement replacement and at water-to-binder (W/B) of 0.5. The flow, density, compressive strength, flexural strength, and water absorption tests are made under relevant standard in this study. The results have shown that the higher FA content increases the flow of mortar but significantly decreases the density of mixtures. The water absorption and setting time increases as the samples incorporating FA. Compressive strength of specimen with 10% FA is approximately equal to control specimen at the 91-day age. The flexural strength of specimen ranges from 7.97 MPa to 8.94 MPa at the 91-day age with the best result for samples containing 10% and 20% FA.


2020 ◽  
Vol 55 (1) ◽  
pp. 43-52 ◽  
Author(s):  
NB Bohara ◽  
DB Ghale ◽  
YP Chapagain ◽  
N Duwal ◽  
J Bhattarai

Effect of firing temperature on some physico-mechanical properties of ten brick samples, those were composed by feldspars, quartz, alumina-rich spinel, primary mullite and hematite phases, was investigated in accordance with ASTM standards. The brick samples fired between 700° to 1100° C showed 11-23 % water adsorptivity (WA), 19-37 % apparent porosity (AP) and 1.50-1.65 g/cm3 bulk density (BD) indicate good physical properties. The maximum compressive strength (CS) of the fired-bricks at 950° to 1000° C was found to be between 15.6 and 17.1 MPa. At 700°-1000° C firing temperatures, the CS of these bricks is found to be increased exponentially with decreasing of both WA and AP, however it is found to be increased with increasing the BD. Consequently, it can be said that there is good correlation between mechanical and physical properties of the fired-brick samples up to the firing temperature of 1000° C. Bangladesh J. Sci. Ind. Res.55(1), 43-52, 2020


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Ji-jing Wang ◽  
Zhen-ning Shi ◽  
Ling Zeng ◽  
Shuang-xing Qi

In order to analyze the influence of different nanoadditives on the physical and mechanical properties of similar silty mudstone materials, nano-TiO2 (NTi), nano Al2O3 (NAl), and nanobentonite (NBe) were added to improve the physical and mechanical properties of silty mudstone similar materials. The physical and mechanical parameters are more in line with silty rock. Finally, nanometer additives suitable for silty mudstone similar materials are determined by conducting density test, natural water absorption test, uniaxial compression test, splitting test, softening coefficient test, expansibility test, and microscopic test. The effects of adding NTi, NAl, and NBe on improving the physical and mechanical properties of silty mudstone similar materials were studied to analyze the influence law of different NTi, NAl, and NBe contents on similar material density, natural water absorption, uniaxial compressive strength, tensile strength, softening coefficient, expansion rate, and other physical and mechanical parameters. The microscopic morphology of similar materials was analyzed by scanning electron microscopy and the mechanism of influence of nanoadditives on the microscopic structure of samples was revealed. The results are as follows. (1) The density of similar materials of silty mudstone increases with the increase of the content of nanoadditive. The natural water absorption rate decreased first and then increased with the increase of the content of nanometer additives, while the softening coefficient decreased with the increase of the content of nanometer additives. The uniaxial compressive strength and tensile strength increased first and then decreased with the increase of the content of nanometer additives. This is due to the incorporation of the nanoadditive amount effective to promote the hydration reaction of gypsum and accelerate the production of cement, while a similar material may be filled in the pores, reducing the internal defects, a similar material to make denser; when excessive dosage, nanoadditives agglomeration occurs, resulting in deterioration of the effect, but will reduce the mechanical properties of similar materials. (2) When the content of NBe is 6%, the physical and mechanical parameters of similar materials can reach or be closer to the silty raw rock except uniaxial compressive strength. The failure mode of the uniaxial compression specimen is also the same as that of the original rock, which can be used as the best choice. The research results laid the foundation for further analysis of NBe application in similar materials.


Sign in / Sign up

Export Citation Format

Share Document