scholarly journals DETEKSI KEMIRIPAN ARTIKEL MELALUI KEYWORDS DENGAN METODE FUZZY STRING MATCHING DALAM NATURAL LANGUAGE PROCESSING

Author(s):  
Humuntal Rumapea ◽  

Natural Language Processing (NLP) is part of artificial intelligence that focuses on natural language processing. That is the language commonly used by humans in communicating with each other. In writing, articles can also be applied. To find out the similarity of the contents of a scientific article to another will make it easier for readers to make selections and make it easier to collect similar documents. Likewise with differences in article content even though they use the same keywords. Measurements are made using the keywords contained in the abstract which consists of several words and the number of keywords. The method used is to use fuzzy string matching to get the number of keywords used in an article. Then the calculation will be done for each keyword used and will be sorted by priority according to the position of the keyword. The search will be carried out starting from the title, abstract, keywords, content, and references. The number of keywords found in each article is shared across all keywords found to generate a similarity percentage level. If the results found are the same in number from one article to another, it can even be categorized that the contents of the article have similar content. The testing process is carried out by counting the number of keywords in the source then comparing all the source keys to the destination articles in the database by searching and comparing each word.

2021 ◽  
Vol 3 (1) ◽  
pp. 12-17
Author(s):  
Sri Mulyatun ◽  
Hastari Utama ◽  
Ali Mustopa

Informasi mengenai Akademik adalah bagian sangat penting dalam kehidupan sehari-hari, dimana informasi Akademik tersebut diperoleh salah satunya dengan kosultasi langsung dengan customer service. Berdasarkan wawancara yang dilakukan terhadap beberapa mahasiswa. mahasiswa memperoleh informasi Akademik dengan cara berkunjung ke kampus dan bertanya langsung terhadap customer service.Penyampaian informasi Akademik tersebut dirasa kurang karena keterbatasan oleh waktu jam buka kampus, sedangkan banyak mahasiswa sangat membutuhkan informasi Akademik dan konsultasi Akademik dengan cepet dan tidak mau terikat oleh waktu buka kampus, bahkan mahasiswa mengalami masalah Akademik disaat kampus sudah tutup, dan membutuhkan konsultasi customer service. Dengan permasalahan tersebut maka banyak mahasiswa yang salah terima dalam mencerna informasi dari akademik. Untuk menyampaikan informasi Akademik yang tidak terikat oleh waktu buka kampus, Universitas AMIKOM Yogyakarta memerlukan suatu alat media layanan informasi Akademik yang dapat merespon setiap pertanyaan mahasiswa tanpa ada keterbatasan waktu dan jumlah customer service. Pada penelitian ini solusi yang diusulkan untuk masalah tersebut salah satunya dengan cara membangun sebuah aplikasi chatbot informasi Akademik (customer service virtual) dengan pendekatan Natural Language Processing dengan menggunakan medote Fuzzy String Matching sebagai media penalarannya. Teknologi chatbot merupakan salah satu bentuk aplikasi Natural Language Processing, NLP itu sendiri merupakan salah satu bidang ilmu Kecerdasan Buatan ( Artificial Intelligence ) yang mempelajari komunikasi antara manusia dengan komputer melalui bahasa alami.


2021 ◽  
pp. 1-13
Author(s):  
Lamiae Benhayoun ◽  
Daniel Lang

BACKGROUND: The renewed advent of Artificial Intelligence (AI) is inducing profound changes in the classic categories of technology professions and is creating the need for new specific skills. OBJECTIVE: Identify the gaps in terms of skills between academic training on AI in French engineering and Business Schools, and the requirements of the labour market. METHOD: Extraction of AI training contents from the schools’ websites and scraping of a job advertisements’ website. Then, analysis based on a text mining approach with a Python code for Natural Language Processing. RESULTS: Categorization of occupations related to AI. Characterization of three classes of skills for the AI market: Technical, Soft and Interdisciplinary. Skills’ gaps concern some professional certifications and the mastery of specific tools, research abilities, and awareness of ethical and regulatory dimensions of AI. CONCLUSIONS: A deep analysis using algorithms for Natural Language Processing. Results that provide a better understanding of the AI capability components at the individual and the organizational levels. A study that can help shape educational programs to respond to the AI market requirements.


Author(s):  
Seonho Kim ◽  
Jungjoon Kim ◽  
Hong-Woo Chun

Interest in research involving health-medical information analysis based on artificial intelligence, especially for deep learning techniques, has recently been increasing. Most of the research in this field has been focused on searching for new knowledge for predicting and diagnosing disease by revealing the relation between disease and various information features of data. These features are extracted by analyzing various clinical pathology data, such as EHR (electronic health records), and academic literature using the techniques of data analysis, natural language processing, etc. However, still needed are more research and interest in applying the latest advanced artificial intelligence-based data analysis technique to bio-signal data, which are continuous physiological records, such as EEG (electroencephalography) and ECG (electrocardiogram). Unlike the other types of data, applying deep learning to bio-signal data, which is in the form of time series of real numbers, has many issues that need to be resolved in preprocessing, learning, and analysis. Such issues include leaving feature selection, learning parts that are black boxes, difficulties in recognizing and identifying effective features, high computational complexities, etc. In this paper, to solve these issues, we provide an encoding-based Wave2vec time series classifier model, which combines signal-processing and deep learning-based natural language processing techniques. To demonstrate its advantages, we provide the results of three experiments conducted with EEG data of the University of California Irvine, which are a real-world benchmark bio-signal dataset. After converting the bio-signals (in the form of waves), which are a real number time series, into a sequence of symbols or a sequence of wavelet patterns that are converted into symbols, through encoding, the proposed model vectorizes the symbols by learning the sequence using deep learning-based natural language processing. The models of each class can be constructed through learning from the vectorized wavelet patterns and training data. The implemented models can be used for prediction and diagnosis of diseases by classifying the new data. The proposed method enhanced data readability and intuition of feature selection and learning processes by converting the time series of real number data into sequences of symbols. In addition, it facilitates intuitive and easy recognition, and identification of influential patterns. Furthermore, real-time large-capacity data analysis is facilitated, which is essential in the development of real-time analysis diagnosis systems, by drastically reducing the complexity of calculation without deterioration of analysis performance by data simplification through the encoding process.


Author(s):  
Katie Miller

The challenge presented is an age when some decisions are made by humans, some are made by AI, and some are made by a combination of AI and humans. For the person refused housing, a phone service, or employment, the experience is the same, but the ability to understand what has happened and obtain a remedy may be very different if the discrimination is attributable to or contributed by an AI system. If we are to preserve the policy intentions of our discrimination, equal opportunity, and human rights laws, we need to understand how discrimination arises in AI systems; how design in AI systems can mitigate such discrimination; and whether our existing laws are adequate to address discrimination in AI. This chapter endeavours to provide this understanding. In doing so, it focuses on narrow but advanced forms of artificial intelligence, such as natural language processing, facial recognition, and cognitive neural networks.


2018 ◽  
Vol 84 (7) ◽  
pp. 1190-1194 ◽  
Author(s):  
Joshua Parreco ◽  
Antonio Hidalgo ◽  
Robert Kozol ◽  
Nicholas Namias ◽  
Rishi Rattan

The purpose of this study was to use natural language processing of physician documentation to predict mortality in patients admitted to the surgical intensive care unit (SICU). The Multiparameter Intelligent Monitoring in Intensive Care III database was used to obtain SICU stays with six different severity of illness scores. Natural language processing was performed on the physician notes. Classifiers for predicting mortality were created. One classifier used only the physician notes, one used only the severity of illness scores, and one used the physician notes with severity of injury scores. There were 3838 SICU stays identified during the study period and 5.4 per cent ended with mortality. The classifier trained with physician notes with severity of injury scores performed with the highest area under the curve (0.88 ± 0.05) and accuracy (94.6 ± 1.1%). The most important variable was the Oxford Acute Severity of Illness Score (16.0%). The most important terms were “dilated” (4.3%) and “hemorrhage” (3.7%). This study demonstrates the novel use of artificial intelligence to process physician documentation to predict mortality in the SICU. The classifiers were able to detect the subtle nuances in physician vernacular that predict mortality. These nuances provided improved performance in predicting mortality over physiologic parameters alone.


Sign in / Sign up

Export Citation Format

Share Document