scholarly journals Improved Two-Point Block Backward Differentiation Formulae for Solving First Order Stiff Initial Value Problems of Ordinary Differential Equations

2020 ◽  
Vol 3 (2) ◽  
pp. 200-209
Author(s):  
S Adee ◽  
VO Atabo

Two numerical methods- I2BBDF2 and I22BBDF2 that compute two points simultaneously at every step of integration by first providing a starting value via fourth order Runge-Kutta method are derived using Taylor series expansion. The two-point block schemes are derived by modifying the existing I2BBDF (5) method of Mohamad et al., (2018). Convergence and stability analysis of the new methods are established with the methods being of order two and A-stable in both cases. Despite the very low order of the new methods, the accuracy of these methods on some stiff initial value problems in the literature proves their superiority over existing methods of higher orders such as I2BBDF(5), BBDF(5), E2OSB(4) among others.

2021 ◽  
Vol 50 (6) ◽  
pp. 1799-1814
Author(s):  
Norazak Senu ◽  
Nur Amirah Ahmad ◽  
Zarina Bibi Ibrahim ◽  
Mohamed Othman

A fourth-order two stage Phase-fitted and Amplification-fitted Diagonally Implicit Two Derivative Runge-Kutta method (PFAFDITDRK) for the numerical integration of first-order Initial Value Problems (IVPs) which exhibits periodic solutions are constructed. The Phase-Fitted and Amplification-Fitted property are discussed thoroughly in this paper. The stability of the method proposed are also given herewith. Runge-Kutta (RK) methods of the similar property are chosen in the literature for the purpose of comparison by carrying out numerical experiments to justify the accuracy and the effectiveness of the derived method.


2021 ◽  
Vol 5 (2) ◽  
pp. 442-446
Author(s):  
Muhammad Abdullahi ◽  
Hamisu Musa

This paper studied an enhanced 3-point fully implicit super class of block backward differentiation formula for solving stiff initial value problems developed by Abdullahi & Musa and go further to established the necessary and sufficient conditions for the convergence of the method. The method is zero stable, A-stable and it is of order 5. The method is found to be suitable for solving first order stiff initial value problems


Author(s):  
Wahid S. Ghaly ◽  
Georgios H. Vatistas

Abstract This paper deals with the numerical solutions of converging and diverging flows, between two disks. The results are obtained by solving a nonlinear third order ordinary differential equation using a modified shooting method. The governing equation is written as a system of three nonlinear first order ODE’s and the resulting system is solved as an initial value problem via the Runge-Kutta method. The results are given in terms of velocity profiles and static pressure distributions. These are compared with previously reported experimental data obtained by others.


Sign in / Sign up

Export Citation Format

Share Document