Optimization of the mathematical programming and applications

2021 ◽  
Vol 2 (5) ◽  
pp. 7902-7911
Author(s):  
Johnny Moisés Valverde Montoro ◽  
Milton Milciades Cortez Gutiérrez ◽  
Hernán Oscar Cortez Gutiérrez

The present investigation responds to the need to solve optimization problems with optimality conditions. The KKT conditions are considered for multiobjective optimization problems with interval-valued objective functions.

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 894
Author(s):  
Savin Treanţă

The present paper deals with a duality study associated with a new class of multiobjective optimization problems that include the interval-valued components of the ratio vector. More precisely, by using the new notion of (ρ,ψ,d)-quasiinvexity associated with an interval-valued multiple-integral functional, we formulate and prove weak, strong, and converse duality results for the considered class of variational control problems.


2019 ◽  
Vol 53 (3) ◽  
pp. 867-886
Author(s):  
Mehrdad Ghaznavi ◽  
Narges Hoseinpoor ◽  
Fatemeh Soleimani

In this study, a Newton method is developed to obtain (weak) Pareto optimal solutions of an unconstrained multiobjective optimization problem (MOP) with fuzzy objective functions. For this purpose, the generalized Hukuhara differentiability of fuzzy vector functions and fuzzy max-order relation on the set of fuzzy vectors are employed. It is assumed that the objective functions of the fuzzy MOP are twice continuously generalized Hukuhara differentiable. Under this assumption, the relationship between weakly Pareto optimal solutions of a fuzzy MOP and critical points of the related crisp problem is discussed. Numerical examples are provided to demonstrate the efficiency of the proposed methodology. Finally, the convergence analysis of the method under investigation is discussed.


Sign in / Sign up

Export Citation Format

Share Document