scholarly journals Isolation and Identification of PGP Rhizobacteria from Saline Soils and Their Effect on Nutrients Uptake in Wheat under Salinity Stress

2016 ◽  
Vol 5 (12) ◽  
pp. 5179
Author(s):  
Ilahi Shaik* ◽  
P. Janakiram ◽  
Sujatha L. ◽  
Sushma Chandra

Indole acetic acid is a natural phytohormone which influence the root and shoot growth of the plants. Six (GM1-GM6) endosymbiotic bacteria are isolated from Gracilaria corticata and screened for the production of IAA out of six, three bacterial strains GM3, GM5 and GM6 produced significant amount of IAA 102.4 µg/ml 89.40 µg/ml 109.43 µg/ml respectively. Presence of IAA in culture filtrate of the above strains is further analyzed and confirmed by TLC. As these bacterial strains, able to tolerate the high salinity these can be effectively used as PGR to increase the crop yield in saline soils.


2021 ◽  
Vol 53 (6) ◽  
Author(s):  
Sadia Shahid ◽  
Abida Kausar ◽  
Muhammad Yasin Ashraf ◽  
Noreen Akhtar ◽  
Zill-I-Huma Nazli

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1735
Author(s):  
Suleiman K. Bello ◽  
Abdullah H. Alayafi ◽  
Samir G. AL-Solaimani ◽  
Kamal A. M. Abo-Elyousr

Salinity impedes soil and crop productivity in over 900 million ha of arable lands worldwide due to the excessive accumulation of salt (NaCl). To utilize saline soils in agriculture, halophytes (salt-tolerant plants) are commonly cultivated. However, most food crops are glycophytes (salt-sensitive). Thus, to enhance the productivity of saline soils, gypsum (CaSO4·2H2O) as well as bio-organic (combined use of organic materials, such as compost and straw with the inoculation of beneficial microbes) amendments have been continuously recognized to improve the biological, physical and chemical properties of saline soils. CaSO4·2H2O regulates the exchange of sodium (Na+) for calcium (Ca2+) on the clay surfaces, thereby increasing the Ca2+/Na+ ratio in the soil solution. Intracellularly, Ca2+ also promotes a higher K+/Na+ ratio. Simultaneously, gypsum furnishes crops with sulfur (S) for enhanced growth and yield through the increased production of phytohormones, amino acids, glutathione and osmoprotectants, which are vital elicitors in plants’ responses to salinity stress. Likewise, bio-organic amendments improve the organic matter and carbon content, nutrient cycling, porosity, water holding capacity, soil enzyme activities and biodiversity in saline soils. Overall, the integrated application of gypsum and bio-organic amendments in cultivating glycophytes and halophytes is a highly promising strategy in enhancing the productivity of saline soils.


1979 ◽  
Vol 59 (1) ◽  
pp. 11-17 ◽  
Author(s):  
J. B. BOLE ◽  
S. A. WELLS

Six-row barley outyielded 2-row barley which outyielded wheat and oats in field plots on non-irrigated saline soils in southern Alberta. Salinity reduced the number of 6-row barley spikes less than it did the number on other cereals compared to spike production on adjacent non-saline soils. More kernels per spike were maintained on 6-row barley than on the other cereals under the salinity stress but average kernel weight was not differentially affected. Although salinity reduced the germination of wheat to a greater extent than it did the other cereals, adequate stands of all cereals were established and germination was not a major factor except on a plot where salinity stress was combined with spring drought. Six-row barley did not maintain its salt-stressed yield advantage over the other cereals under the drought conditions on a non-saline soil. The tolerance of cereals to osmotic stress thus differed from the tolerance to drought stress under dryland field conditions.


Author(s):  
James Oludare Agbolade ◽  
Oyinade David ◽  
Abiodun Ajiboye ◽  
Joseph Kioko ◽  
Okanlawon Jolayemi ◽  
...  

Wheat (Triticum aestivum) is an important grains plant that can sustain food security and holds high nutritional values to the benefit of mankind. Activities of salinity in arid and semi-arid region have drastically reduced the production of wheat grains. Selenium (Se) is a micronutrient required by plants in small concentration to aid their growth. This study was aimed at identifying impact of Se on salinity-stressed wheat plants. Wheat seeds were soaked for eight hours in 0, 50, 100 and 150 mg/L Selenite concentrations and five sterilize-treated seeds were sown in 5 kg quantity of soil. This was subjected to 0, 100 and 200 mM of Sodium chloride (NaCl) concentration, respectively. The study revealed that Se increased production/expression of superoxide dismutase and catalase enzymes under salinity stress, thus growth of wheat plants was improved. Although the effects of Se on the wheat plants were concentration-based, nevertheless low lipid peroxidation and plant growth at 150 mg/L of Se were observed. Toxicity of Se to wheat plant could occur when there is no salinity stress. Therefore, farmers are encouraged to prime wheat seeds with 150 mg/L Se when cultivating saline soils.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1114
Author(s):  
Yaling Hou ◽  
Wenzhi Zeng ◽  
Menglu Hou ◽  
Zhao Wang ◽  
Ying Luo ◽  
...  

To investigate the diversity and structure of soil bacterial and fungal communities in saline soils, soil samples with three increasing salinity levels (S1, S2 and S3) were collected from a maize field in Yanqi, Xinjiang Province, China. The results showed that the K+, Na+, Ca2+ and Mg2+ values in the bulk soil were higher than those in the rhizosphere soil, with significant differences in S2 and S3 (p < 0.05). The enzyme activities of alkaline phosphatase (ALP), invertase, urease and catalase (CAT) were lower in the bulk soil than those in the rhizosphere. Principal coordinate analysis (PCoA) demonstrated that the soil microbial community structure exhibited significant differences between different salinized soils (p < 0.001). Data implied that the fungi were more susceptible to salinity stress than the bacteria based on the Shannon and Chao1 indexes. Mantel tests identified Ca2+, available phosphorus (AP), saturated electrical conductivity (ECe) and available kalium (AK) as the dominant environmental factors correlated with bacterial community structures (p < 0.001); and AP, urease, Ca2+ and ECe as the dominant factors correlated with fungal community structures (p < 0.001). The relative abundances of Firmicutes and Bacteroidetes showed positive correlations with the salinity gradient. Our findings regarding the bacteria having positive correlations with the level of salinization might be a useful biological indicator of microorganisms in saline soils.


Author(s):  
F. V Hasanova

The role of nanotechnology in solving environmental problems is increasing, and there is a need for additional research in this area. One of these environmental problems is soil salinization. During salinity stress, germination, growth and development ofplants slow down, and the quantity of pigments, chlorophyll and carotenoids in leaves decreases. So does the activity of such important physiological processes as photosynthesis, respiratory processes and enzyme activity. There are several ways to improve the salt tolerance of cotton. The cotton varieties can be improved genetically, or another way is to increase the stability of seeds or seedlings by chemical, biological or physological methods. At the early stages of development cotton seedling are very sensitive to salinity and other stress factors. The study investigated the effect of Al nanoparticles on the pigment composition in cotton seedling leaves and on the enzyme activity (ascorbate oxidase, polyphenol peroxidase and guaiacol-dependent peroxidase) in soil samples, collected in different areas of the Mugan plain. It was found that cotton seeds develop well in saline soils if treated with Al nanoparticles. Significant changes were observed in the plant development and in the kinetics of physiological processes. The quantity of chlorophyll pigments a and b in cotton sprouts (mainly at three leaf stages) increased, and the change in enzyme activity occured. Thus, during salinity stress the influence of basic enzymes, such as ascorbic peroxidase, increased in sprouts but decreased in leaves if the cotton plants are cultivated in saline soils with Al nanoparticles. The decrease in the activity of polyphenol oxidase and guaiacol-dependent peroxidase was insignificant.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1552
Author(s):  
Gobinda Dey ◽  
Pritam Banerjee ◽  
Raju-Kumar Sharma ◽  
Jyoti-Prakash Maity ◽  
Hassan Etesami ◽  
...  

Among the environmental factors, soil salinity is one of the most detrimental factors affecting plant growth and productivity. Nutritional-imbalance is also known as one of the negative effects of salinity on plant growth and productivity. Among the essential plant nutrients, phosphorus (P) is a nutrient in which the uptake, transport, and distribution in plant is adversely affected by salinity-stress. Salinity-stress-mediated low a P availability limits the crop production. Adding additional P fertilizer is generally recommended to manage P deficit in saline-soils; however, the low-efficiency of available P fertilizer use in salt-affected soils, restricts P availability, and P fertilizers are also a cause of significant environmental concerns. The application of salinity-tolerant phosphate–solubilizing-bacteria (ST-PSB) can be as a greatly effective and economical way to improve the P availability, and recover the P-deficit in saline-land. This review focuses on soil salinization and its effect on P availability, the mechanisms of P solubilization by ST-PSB, ST-PSB diversity, their role in alleviating salinity stress in plants, the current and future scenarios of their use, and the potential application of this knowledge to manage the sustainable environmental system. According to this review, adding ST-PSB to saline soils could be an alternative for alleviating the negative effects of salinity on plants and may ameliorate salinity tolerance.


Sign in / Sign up

Export Citation Format

Share Document