scholarly journals Identification of Novel Protein Targets for Fenugreek to Treat Diabetes: A Molecular Docking Study

2021 ◽  
Vol 10 (3) ◽  
Author(s):  
Haasini Nandyala ◽  
Ariel Pham ◽  
Anushka Wagle ◽  
Hansika Daggolu ◽  
Amrita Guha ◽  
...  

Abstract: Trigonella foenum-graecum has been shown to have anti-diabetic potential through a wide variety of in-vivo assays as well as by inhibiting enzymes such as alpha-glucosidase and alpha-amylase. Studies have indicated the therapeutic potential of different phytoconstituents found in Trigonella foenum-graceum including diosgenin trigonelline, 4-hydroxyisoleucine, leucine, and L-lysine. This study aims to find novel protein targets that these specific phytoconstituents from fenugreek can bind to, thereby helping to treat diabetes mellitus. Through multiple stages of molecular docking and analyzing the binding sites in comparison to previously reported inhibitors, a suitable and novel target protein for four of the compounds was found and the relevance to diabetes was discussed, setting up these compounds as novel inhibitors for the target proteins.

Author(s):  
Kapish Kapoor

Leishmaniasis is one of the most dreadful diseases as a leading cause of death in most of the developed countries. In the given study molecular docking study was performed on the library of coumarin analogues as anti-leishmaniasis agents. Total 300 coumarins analogues were taken from Pubmed and were studied using a molecular docking study on trypanothione reductase from Leishmania infantum (PDB code: 2JK6 and 2P18) and Leishmania mexicana (PDB code: 3PP7). Molecular docking result revealed that most active compound COU-130 and COU-220 bind to the active site of the protein with amino acids present in the various proteins. In PDB 2JK6 the active compound binds to the amino acid thr-51 and ser-14 were binding to the active site, and in PDB 3PP7 the active compound binds amino acid thr-26 and in PDB 2P18 the active compound binds to the amino acid phe-219 and try-212. Further in vitro and in vivo study of selected coumarin analogues can be studied for their therapeutic potential in treating leishmaniasis.


2020 ◽  
Author(s):  
pooja singh ◽  
Angkita Sharma ◽  
Shoma Paul Nandi

<p>Within the span of a few months, the severe acute respiratory syndrome coronavirus, COVID-19 (SARS-CoV-2), has proven to be a pandemic, affecting the world at an exponential rate. It is extremely pathogenic and causes communicable infection in humans. Viral infection causes difficulties in breathing, sore throat, cough, high fever, muscle pain, diarrhea, dyspnea, and may lead to death. Finding a proper drug and vaccines against this virus is the need of the hour. The RNA genome of COVID19 codes for the main protease M<sup>pro</sup>, which is required for viral multiplication. To identify possible antiviral drug(s), we performed molecular docking studies. Our screen identified ten biomolecules naturally present in <i>Aspergillus flavus</i> and <i>Aspergillus oryzae</i> fungi. These molecules include Aspirochlorine, Aflatoxin B1, Alpha-Cyclopiazonic acid, Sporogen, Asperfuran, Aspergillomarasmine A, Maltoryzine, Kojic acid, Aflatrem and Ethyl 3-nitropropionic acid, arranged in the descending order of their docking score. Aspirochlorine exhibited the docking score of – 7.18 Kcal/mole, higher than presently used drug Chloroquine (-6.2930522 Kcal/mol) and out of ten ligands studied four has docking score higher than chloroquine. These natural bioactive compounds could be tested for their ability to inhibit viral growth <i>in- vitro</i> and <i>in-vivo</i>.<b> </b></p>


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6646
Author(s):  
Fernando Calzada ◽  
Elihú Bautista ◽  
Sergio Hidalgo-Figueroa ◽  
Normand García-Hernández ◽  
Elizabeth Barbosa ◽  
...  

Incomptine A (IA) is a sesquiterpene lactone isolated from Decachaeta incompta that induces apoptosis, reactive oxygen species production, and a differential protein expression on the U-937 (diffuse histiocytic lymphoma) cell line. In this work, the antitumor potential of IA was investigated on Balb/c mice inoculated with U-937 cells and through the brine shrimp lethality (BSL) test. Furthermore, IA was subjected to molecular docking study using as targets proteins associated with processes of cancer as apoptosis, oxidative stress, and glycolytic metabolism. In addition to determining the potential toxicity of IA in human, its acute toxicity was performed in mice. Results reveals that IA showed high antilymphoma activity and BSL with an EC50 of 2.4 mg/kg and LC50 16.7 µg/mL, respectively. The molecular docking study revealed that IA has strong interaction on all targets used. In the acute oral toxicity, IA had a LD50 of 149 mg/kg. The results showed that the activities of IA including antilymphoma activity, BSL, acute toxicity, and in silico interactions were close to the methotrexate, an anticancer drug used as positive control. These findings suggest that IA may serve as a candidate for the development of a new drug to combat lymphoma.


Biomedicines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 68 ◽  
Author(s):  
Md. Adnan ◽  
Md. Nazim Uddin Chy ◽  
A.T.M. Mostafa Kamal ◽  
Md Obyedul Kalam Azad ◽  
Kazi Asfak Ahmed Chowdhury ◽  
...  

Piper sylvaticum Roxb. is traditionally used by the indigenous people of tropical and subtropical countries like Bangladesh, India, and China for relieving the common cold or a variety of chronic diseases, such as asthma, chronic coughing, piles, rheumatic pain, headaches, wounds, tuberculosis, indigestion, and dyspepsia. This study tested anxiolytic and antioxidant activities by in vivo, in vitro, and in silico experiments for the metabolites extracted (methanol) from the leaves and stems of P. sylvaticum (MEPSL and MEPSS). During the anxiolytic evaluation analyzed by elevated plus maze and hole board tests, MEPSL and MEPSS (200 and 400 mg/kg, body weight) exhibited a significant and dose-dependent reduction of anxiety-like behavior in mice. Similarly, mice treated with MEPSL and MEPSS demonstrated dose-dependent increases in locomotion and CNS simulative effects in open field test. In addition, both extracts (MEPSL and MEPSS) also showed moderate antioxidant activities in DPPH scavenging and ferric reducing power assays compared to the standard, ascorbic acid. In parallel, previously isolated bioactive compounds from this plant were documented and subjected to a molecular docking study to correlate them with the pharmacological outcomes. The selected four major phytocompounds displayed favorable binding affinities to potassium channel and xanthine oxidoreductase enzyme targets in molecular docking experiments. Overall, P. sylvaticum is bioactive, as is evident through experimental and computational analysis. Further experiments are necessary to evaluate purified novel compounds for the clinical evaluation.


2020 ◽  
Author(s):  
sabri ahmed cherrak ◽  
merzouk hafida ◽  
mokhtari soulimane nassima

A novel (COVID-19) responsible of acute respiratory infection closely related to SARS-CoV has recently emerged. So far there is no consensus for drug treatment to stop the spread of the virus. Discovery of a drug that would limit the virus expansion is one of the biggest challenges faced by the humanity in the last decades. In this perspective, testing existing drugs as inhibitors of the main COVID-19 protease is a good approach.Among natural phenolic compounds found in plants, fruit, and vegetables; flavonoids are the most abundant. Flavonoids, especially in their glycosylated forms, display a number of physiological activities, which makes them interesting to investigate as antiviral molecules.The flavonoids chemical structures were downloaded from PubChem and protease structure 6lu7 was from the Protein Data Bank site. Molecular docking study was performed using AutoDock Vina. Among the tested molecules Quercetin-3-O-rhamnoside showed the highest binding affinity (-9,7 kcal/mol). Docking studies showed that glycosylated flavonoids are good inhibitors for the covid-19 protease and could be further investigated by in vitro and in vivo experiments for further validation.


INDIAN DRUGS ◽  
2021 ◽  
Vol 58 (01) ◽  
pp. 47-63
Author(s):  
V. S. Arya ◽  
◽  
S. K. Kanthlal

Inflammatory bowel disorder is a group of inflammatory conditions of the colon and small intestine with greater prevalence among the Indian population. Our focus is to explore and compare the therapeutic potential of phytoconstituents from apple and passion fruit by assessing the affinity with the target sites such as JAK/STAT, MPO and iNOS by molecular docking studies. ADMET prediction and drug-likeness were also conducted to screen out the best-fit ligands, whic are expected to be biologically effective. Few selected constituents displayed considerable binding affinity with the selected targets in our docking study. Interestingly, ligands of phenolic nature displayed the highest inhibitory activity by forming strong hydrogen bonding and van der Waals force with the amino acid residues of the target protein. Comparative study proves that constituents of apple showed better effect than passion fruit. It helps to give the existing information to identify precise targets for the selected drugs. However, the results are preliminary and experimental evaluation needs to be done for obtaining the confirmatory results.


Sign in / Sign up

Export Citation Format

Share Document