scholarly journals Mohr-Coulomb and Hardening Soil Model Comparison of the Settlement of an Embankment Dam

2019 ◽  
Vol 9 (5) ◽  
pp. 4654-4658 ◽  
Author(s):  
A. H. Bhutto ◽  
S. Zardari ◽  
M. A. Zardari ◽  
G. S. Bhurgri ◽  
B. A. Memon ◽  
...  

In this study, numerical analysis of an embankment dam was carried out to predict settlement behavior with the use of the Mohr-Coulomb Model (MCM) and of the Hardening Soil Model (HSM). The MCM was applied to all material zones of the dam and the HSM was used for four major material zones that occupied significant volume. The settlement response of the dam was similar for MCM and HSM for three material zones (clay core, sandy gravel and random fill), each having a modulus of elasticity (MOE) in the range of 25000 to 50000kPa. However, it was found that after the end of the construction, the MCM showed about 57% and 50% more settlement as compared to HSM when MOE of sandy siltstone varied from 70000 to 125000kPa respectively. The results regarding the dam settlement predicted with the HSM are in agreement with the findings in previous studies.

2020 ◽  
Vol 10 (5) ◽  
pp. 6220-6223
Author(s):  
A. H. Bhutto ◽  
G. S. Bhurgri ◽  
S. Zardari ◽  
M. A. Zardari ◽  
B. A. Memon ◽  
...  

The settlement calculation of a multi-story building is a challenging task due to the variation of soil properties and the use of an appropriate constitutive model for the reliable representation of soils’ stress-strain behaviors. In this study, the settlement response of a multi-story building was calculated with the simple Mohr-Coulomb Model (MCM) and the Hardening Soil Model (HSM). The effect of soil modulus of elasticity using both models was investigated on the overall settlement response of the building. Results indicated that MCM overestimated immediate settlement in a range of 50 to 65% compared to HSM. The settlement response of the building calculated with both models was within the allowable range. The results of this study can be helpful for geotechnical engineers working on reliable predictions of the settlement of multi-story buildings.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Hadianti Muhdinar Pasaribu

Banyaknya pembangunan infrastruktur yang merupakan salah satu tolak ukur kemajuan suatu daerah menyebabkan terjadinya penyempitan lahan didaerah tersebut. Sehingga pemanfaatan ruang dan lahan sangat dibutuhkan untuk menunjang kemajuan pesatnya pembangunan infrastruktur. Salah satu inovasi terbaik dalam mengatasi masalah keterbatasan lahan adalah membuat bangunan bawah tanah sehingga memberi ruang yang lebih untuk pembangunan. Pembangunan yang cukup terbaru di Indonesia saat ini adalah pembangunan MRT (Mass Rapid Transit) yang dilakukan di Jakarta. Pembangunan ini dalam pelaksanaannya membutuhkan proses konstruksi terowongan (tunneling) dan galian dalam untuk tiap stasiunnya. Pada penelitian ini, penulis terpusat terhadap masalah galian dalam pada stasiun Senayan dari proyek konstruksi MRT Jakarta. Permasalahan terbesar dalam suatu pekerjaan galian dalam adalah adanya deformasi lateral pada dinding bangunan bawah tanah dalam hal ini yang digunakan adalah dinding diafragma (D-Wall) dan juga adanya penurunan tanah disekitar galian. Oleh karena itu, perlu dilakukan pengecekan agar tidak terjadi keruntuhan. Metode konstruksi yang digunakan pada stasiun Senayan adalah metode konstruksi Top-Down. Pada penelitian ini dilakukan analisis deformasi horizontal dan penurunan tanah menggunakan software Plaxis 3D dengan dua pemodelan tanah, yaitu model tanah Mohr Coulomb dan Hardening Soil. Hasil deformasi horizontal yang diperoleh menggunakan model tanah Hardening Soil lebih mendekati  monitoring dilapangan dibandingkan dengan model tanah Mohr-Coulomb. Penelitian ini berfokus pada bagian-bagian tepi pada dinding diafragma melengkapi jurnal sebelumnya yang berfokus pada titik tengah dari dinding diafragma. Besarnya deformasi horizontal pada tahap akhir galian (penimbunan kembali tanah hingga dasar muka tanah) di titik P#80 (di tepi dinding diafragma) tercatat pada monitoring inclinometer sebesar 4.15 mm, dan deformasi yang dihasilkan menggunakan model Hardening Soil sebesar 9.57 mm sedangkan  menggunakan model Mohr-Coulomb sebesar 16.05 mm. Hasil deformasi horizontal yang diperoleh menggunakan model tanah Hardening Soil lebih mendekati  monitoring dilapangan dibandingkan dengan model tanah Mohr-Coulomb meskipun hasil yang diperoleh cukup jauh dari monitoring dilapangan.  Kata Kunci : Galian Dalam, Deformasi Horizontal, Model Mohr Coulomb, Model Hardening Soil, Plaxis 3D  The number of infrastructure development which is one of the benchmarks of the progress of a region causes the narrowing of land in the area. So that the utilization of space and land is needed to support the rapid progress of infrastructure development. One of the best innovations in overcoming the problem of land limitations is to make the underground building giving more space for development. The most recent development in Indonesia today is the construction of MRT (Mass Rapid Transit) conducted in Jakarta. This development in its implementation requires tunneling and deep trenching process for each station. In this study, the authors centered on the deep trenching problems at the Senayan station from the Jakarta MRT construction project. The biggest problem in a deep trenching work is the lateral deformation of underground building walls in this case which is used diaphragm wall (D-Wall) and also the decrease of soil around the excavation. Therefore, it is necessary to check to avoid collapse. The construction method used in Senayan station is a Top-Down construction method. In this research, horizontal deformation and soil degradation analysis using Plaxis 3D software with two soil modeling, Mohr Coulomb and Hardening Soil soil model. The result of the horizontal deformation obtained using Soil Hardening Soil model is closer to monitoring the field compared to the Mohr-Coulomb soil model. This study focuses on the edges of the diaphragm wall complementing the previous journal focusing on the midpoint of the diaphragm wall. The magnitude of the horizontal deformation at the final stages of excavation (backfill) to P # 80 (on the edge of the diaphragm wall) was recorded in inclinometer monitoring of 4.15 mm, and the resulting deformation using the Hardening Soil model of 9.57 mm while using the Mohr model -Coulomb of 16.05 mm. The horizontal deformation results obtained using the Soil Hardening Soil model is closer to the field monitoring than the Mohr-Coulomb soil model although the results obtained are quite far from the field monitoring.Keywords: Deep Excavation, Horizontal Deformation, Mohr Coulomb Model, Hardening Soil Model, Plaxis 3D.


2019 ◽  
Vol 9 (5) ◽  
pp. 4750-4754 ◽  
Author(s):  
A. H. Bhutto ◽  
S. Zardari ◽  
G. S. Bhurgri ◽  
M. A. Zardari ◽  
R. Bhanbhro ◽  
...  

For the settlement computation of an embankment dam, the soil stiffness is of great importance. Unfortunately, due to the lack of funds allocated for geotechnical investigation, stiffness parameters are commonly not evaluated as compared to strength properties. As a result, this may create hindrance in the use of advanced constitutive models such as Hardening Soil Model (HSM). In this study, the settlement with respect to depth and long term settlement of an embankment dam computed with Mohr-Coulomb Model (MCM) is compared with that of HSM applied to foundation soil only with limited data on stiffness. The results show that the MCM overestimated settlement in comparison with HSM. The settlement increment of MCM, in comparison with HSM, at the crest and at the depth of 120m was 53% and 82% respectively after the filling of the reservoir. The settlement computed with MCM and HSM were 2.9% and 1.35% of the dam height. It can be interpreted that the settlement predicted with MCM is unrealistically high due to the single constant value of modulus of elasticity (MOE), while the predictions of HSM are in agreement with the literature. In addition, the long term settlement computed using MCM is about 59% higher than that of HSM for the condition after the filling of the reservoir. This paper shows that the settlement of an embankment dam could be predicted reliably by using HSM even when a limited number of stiffness data is available.


2020 ◽  
Vol 10 (2) ◽  
pp. 5496-5500
Author(s):  
A. H. Bhutto ◽  
G. S. Bhurgri ◽  
S. Zardari ◽  
M. A. Zardari ◽  
R. Bhanbhro ◽  
...  

Numerical analysis for the safe rate determination of lowering of an embankment dam was performed in this study with the use of the finite element method. Coupled deformation and consolidation analysis were carried out for staged construction and drawdown of a 59m embankment dam for varying undrained shear strength of the clay core. The lowering of the reservoir was performed at different depths between two extreme scenarios, i.e. rapid lowering rate (1m/day) and slow lowering rate (0.1m/day). The reservoir of the dam was lowered to a depth from 10m to 55m in gradual increments. The results indicated that the safety of the dam was satisfactory when the reservoir was lowered at the quick rate for a depth of 10m, 20m, 30m respectively when the undrained shear strength of the clay core was taken as 20, 25 and 30kN/m2. Regarding the case of slow drawdown rate of the reservoir, it was found that the reservoir could be lowered up to a depth of 55m at a rate of 0.1m/day when the undrained strength of clay core was 25kN/m2. The stability of the dam was also found satisfactory even though the reservoir was lowered at a rate of 0.25m/day for a depth of 55m when the undrained shear strength of clay core was 30kN/m2.


2016 ◽  
Vol 11 (6) ◽  
pp. 1271-1279
Author(s):  
Sirikanya Laosuwan ◽  
◽  
Tawatchai Tanchaisawat ◽  

Natural disasters recently occurred in the northern region of Thailand have been increasingly becoming an important issue with emphasis on the alarm and caution for damage and frequency of disasters which may cause major losses of human lives and properties. In May 2014, six provinces in the northern region of Thailand were affected by the earthquakes (the main shock of Mw 6.1 (Moment Magnitude by USGS) and hundreds of aftershocks including the one Mw 5.9 at most) that had the epicenters at Phan District, Chiang Rai Province (19.656°N 99.670°E). This research aimed to study the distribution of seismic accelerations at Mae Ngad Somboon Chon Dam in Chiang Mai. The accelerometers were installed at 3 positions in the dam, consisting of the crest, middle and base of the dam. The collected data were compared and analyzed by the Finite Element Method. Analyses of the Linear Elastic Model, the Mohr-Coulomb Model and the Hardening Soil Model with using the acceleration actually recorded at the dam were conducted to determine an appropriate analytical model. The results indicated that the accelerations obtained from the Hardening Soil Model were more suitable for actual accelerations among others. Therefore the behavior of the Hardening Soil Model is more realistic than that of the Linear Elastic Model or the Mohr-Coulomb Model.


2022 ◽  
Vol 07 (01) ◽  
Author(s):  
Serpil Erden ◽  

In this study, the performances of the sand piles in Istanbul's Bağcılar and Zeytinburnu districts has been analyzed using Finite Element Method (FEM). Single and group (triple) piles with various length/diameter ratios (L/D) were placed in the water-saturated soft clay soil. Sand piles were modeled in various L/D ratios (10, 5.71, and 8.57). The distance between the piles was chosen as 2 meters and the group effect was also investigated. A uniformly distributed load of 162 kN/m2 is placed on the ground. In addition, the soil was modeled with the Soft-Soil soil model, the hardening soil model for the infill part, and the sand piles with the Mohr-Coulomb soil model. According to the results , the settlement of the soil decreases by 52.8% for a single pile with an L/D ratio of 8.57. However, the best L/D ratio for triple piles was found to be 5.71. In this case, the settlement decreases by 52.8% compared to the pileless situation. Finally it was concluded that the model with the L/D ratio of 8.57 reduced settlement in the best and the most efficient way.


Author(s):  
Heitor Cardoso Bernardes ◽  
Maurício Martines Sales ◽  
Romulo Rodrigues Machado ◽  
Aleones José da Cruz Junior ◽  
Renato Pinto da Cunha ◽  
...  

Author(s):  
Raksiri Sukkarak ◽  
Suched Likitlersuang ◽  
Pornkasem Jongpradist ◽  
Pitthaya Jamsawang

Sign in / Sign up

Export Citation Format

Share Document