Development of novel hybrid models for the prediction of COVID-19 in Kuwait
The first case of COVID-19 in Kuwait was reported on February 24, 2020. There is a need to develop a prediction model for estimating this epidemic size. In this study, we aimed to develop and compare several prediction models using real-time data of COVID-19 from February 24 to June 12, 2020. We modeled the uncertainty and non-stationary real-time data of COVID-19 cases using a multilayer model with different decomposition techniques. We applied our proposed hybrid methodology to predict COVID-19 cases in Kuwait. We further evaluated the performance of the novel hybrid model with others using mean relative error, mean absolute error, and mean square error. We found that our proposed hybrid approach performed better than others for predicting COVID-19 cases.