epidemic size
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 108)

H-INDEX

25
(FIVE YEARS 8)

Author(s):  
Ágnes Backhausz ◽  
István Z. Kiss ◽  
Péter L. Simon

AbstractA key factor in the transmission of infectious diseases is the structure of disease transmitting contacts. In the context of the current COVID-19 pandemic and with some data based on the Hungarian population we develop a theoretical epidemic model (susceptible-infected-removed, SIR) on a multilayer network. The layers include the Hungarian household structure, with population divided into children, adults and elderly, as well as schools and workplaces, some spatial embedding and community transmission due to sharing communal spaces, service and public spaces. We investigate the sensitivity of the model (via the time evolution and final size of the epidemic) to the different contact layers and we map out the relation between peak prevalence and final epidemic size. When compared to the classic compartmental model and for the same final epidemic size, we find that epidemics on multilayer network lead to higher peak prevalence meaning that the risk of overwhelming the health care system is higher. Based on our model we found that keeping cliques/bubbles in school as isolated as possible has a major effect while closing workplaces had a mild effect as long as workplaces are of relatively small size.


2022 ◽  
Vol 7 (4) ◽  
pp. 5616-5633
Author(s):  
Rebecca C. Tyson ◽  
◽  
Noah D. Marshall ◽  
Bert O. Baumgaertner ◽  
◽  
...  

<abstract><p>Public opinion and opinion dynamics can have a strong effect on the transmission rate of an infectious disease for which there is no vaccine. The coupling of disease and opinion dynamics however, creates a dynamical system that is complex and poorly understood. We present a simple model in which susceptible groups adopt or give up prophylactic behaviour in accordance with the influence related to pro- and con-prophylactic communication. This influence varies with disease prevalence. We observe how the speed of the opinion dynamics affects the total size and peak size of the epidemic. We find that more reactive populations will experience a lower peak epidemic size, but possibly a larger final size and more epidemic waves, and that an increase in polarization results in a larger epidemic.</p></abstract>


2021 ◽  
Author(s):  
Guillaume Le Treut ◽  
Greg Huber ◽  
Mason Kamb ◽  
Kyle Kawagoe ◽  
Aaron McGeever ◽  
...  

Propagation of an epidemic across a spatial network of communities is described by a variant of the SIR model accompanied by an intercommunity infectivity matrix. This matrix is estimated from fluxes between communities, obtained from cell-phone tracking data recorded in the USA between March 2020 and February 2021. We have applied this model to the 2020 dynamics of the SARS-CoV-2 pandemic. We find that the numbers of susceptible and infected individuals predicted by the model agree with the reported cases in each community by fitting just one global parameter representing the frequency of interaction between individuals. The effect of "shelter-in-place" policies introduced across the USA at the onset of the pandemic is clearly seen in our results. We then consider the effect that alternative policies would have had, namely restricting long-range travel. We find that this policy is successful in decreasing the epidemic size and slowing down the spread, at the expense of a substantial restriction on mobility as a function of distance. When long-distance mobility is suppressed, this policy results in a traveling wave of infections, which we characterize analytically. In particular, we show the dependence of the wave velocity and profile on the transmission parameters. Finally, we discuss a policy of selectively constraining travel based on an edge-betweenness criterion.


Author(s):  
Ahmad Al-Dousari ◽  
◽  
Maria Qurban ◽  
Ijaz Hussain ◽  
Maha Al-Hajeri ◽  
...  

The first case of COVID-19 in Kuwait was reported on February 24, 2020. There is a need to develop a prediction model for estimating this epidemic size. In this study, we aimed to develop and compare several prediction models using real-time data of COVID-19 from February 24 to June 12, 2020. We modeled the uncertainty and non-stationary real-time data of COVID-19 cases using a multilayer model with different decomposition techniques. We applied our proposed hybrid methodology to predict COVID-19 cases in Kuwait. We further evaluated the performance of the novel hybrid model with others using mean relative error, mean absolute error, and mean square error. We found that our proposed hybrid approach performed better than others for predicting COVID-19 cases.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kourosh Kabir ◽  
Ali Taherinia ◽  
Davoud Ashourloo ◽  
Ahmad Khosravi ◽  
Hossien Karim ◽  
...  

Abstract Background The first confirmed cases of COVID-19 in Iran were reported in Qom city. Subsequently, the neighboring provinces and gradually all 31 provinces of Iran were involved. This study aimed to investigate the case fatility rate, basic reproductive number in different period of epidemic, projection of daily and cumulative incidence cases and also spatiotemporal mapping of SARS-CoV-2 in Alborz province, Iran. Methods A confirmed case of COVID-19 infection was defined as a case with a positive result of viral nucleic acid testing in respiratory specimens. Serial interval (SI) was fitted by gamma distribution and considered the likelihood-based R0 using a branching process with Poisson likelihood. Seven days average of cases, deaths, doubling times and CFRs used to draw smooth charts. kernel density tool in Arc GIS (Esri) software has been employed to compute hot spot area of the study site. Results The maximum-likelihood value of R0 was 2.88 (95%, CI: 2.57–3.23) in the early 14 days of epidemic. The case fatility rate for Alborz province (Iran) on March 10, was 8.33% (95%, CI:6.3–11), and by April 20, it had an increasing trend and reached 12.9% (95%,CI:11.5–14.4). The doubling time has been increasing from about two days and then reached about 97 days on April 20, 2020, which shows the slowdown in the spread rate of the disease. Also, from March 26 to April 2, 2020 the whole Geographical area of Karj city was almost affected by SARS-CoV-2. Conclusions The R0 of COVID-19 in Alborz province was substantially high at the beginning of the epidemic, but with preventive measures and public education and GIS based monitoring of the cases,it has been reduced to 1.19 within two months. This reduction highpoints the attainment of preventive measures in place, however we must be ready for any second epidemic waves during the next months.


Author(s):  
S. A. Pedro ◽  
H. Rwezaura ◽  
J. M. Tchuenche

We formulate an influenza model with treatment and vaccination. Both time invariant and time-dependent uncertainty analyses and sensitivity analysis of the model parameter values are carried out to understand the dependence of the reproduction numbers and model state variables on their components. Results show that the relationship between treatment and epidemic size is nonlinear and that there exists a critical threshold treatment rate under which treatment is beneficial. Sensitivity analysis suggests that the most significant parameters are those related to infection transmission, infectiousness, duration of infectiousness and waning immunity. Further, there are important instances when the relationship between some parameters and model outputs changes behavior from negatively to positively correlated or vice versa because all sensitivity indices, except [Formula: see text] are functions of other parameters and thus will change with the change in parameter values. For example, treatment helps to lower the epidemic size, but may then become a “source” of infection likely due to resistance de novo. This knowledge is critical for proper public health planning and guidance of control strategies.


2021 ◽  
Author(s):  
Mincheng Wu ◽  
Chao Li ◽  
Zhangchong Shen ◽  
Shibo He ◽  
Lingling Tang ◽  
...  

Abstract Digital contact tracing has been recently advocated by China and many countries as part of digital prevention measures on COVID-19. Controversies have been raised about their effectiveness in practice as it remains open how they can be fully utilized to control COVID-19. In this article, we show that an abundance of information can be extracted from digital contact tracing for COVID-19 prevention and control. Specifically, we construct a temporal contact graph that quantifies the daily contacts between infectious and susceptible individuals by exploiting a large volume of location-related data contributed by 10,527,737 smartphone users in Wuhan, China. The temporal contact graph reveals five time-varying indicators can accurately capture actual contact trends at population level, demonstrating that travel restrictions (e.g., city lockdown) in Wuhan played an important role in containing COVID-19. We reveal a strong correlation between the contacts level and the epidemic size, and estimate several significant epidemiological parameters (e.g., serial interval). We also show that user participation rate exerts higher influence on situation evaluation than user upload rate does. At individual level, however, the temporal contact graph plays a limited role, since the behavior distinction between the infected and uninfected contacted individuals are not substantial. The revealed results can tell the effectiveness of digital contact tracing against COVID-19, providing guidelines for governments to implement interventions using information technology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Baltazar Espinoza ◽  
Madhav Marathe ◽  
Samarth Swarup ◽  
Mugdha Thakur

AbstractInfections produced by non-symptomatic (pre-symptomatic and asymptomatic) individuals have been identified as major drivers of COVID-19 transmission. Non-symptomatic individuals, unaware of the infection risk they pose to others, may perceive themselves—and be perceived by others—as not presenting a risk of infection. Yet, many epidemiological models currently in use do not include a behavioral component, and do not address the potential consequences of risk misperception. To study the impact of behavioral adaptations to the perceived infection risk, we use a mathematical model that incorporates the behavioral decisions of individuals, based on a projection of the system’s future state over a finite planning horizon. We found that individuals’ risk misperception in the presence of non-symptomatic individuals may increase or reduce the final epidemic size. Moreover, under behavioral response the impact of non-symptomatic infections is modulated by symptomatic individuals’ behavior. Finally, we found that there is an optimal planning horizon that minimizes the final epidemic size.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0256971
Author(s):  
Saqib Ali Nawaz ◽  
Jingbing Li ◽  
Uzair Aslam Bhatti ◽  
Sibghat Ullah Bazai ◽  
Asmat Zafar ◽  
...  

Studying the progress and trend of the novel coronavirus pneumonia (COVID-19) transmission mode will help effectively curb its spread. Some commonly used infectious disease prediction models are introduced. The hybrid model is proposed, which overcomes the disadvantages of the logistic model’s inability to predict the number of confirmed diagnoses and the drawbacks of too many tuning parameters of the SEIR (Susceptible, Exposed, Infectious, Recovered) model. The realization and superiority of the prediction of the proposed model are proven through experiments. At the same time, the influence of different initial values of the parameters that need to be debugged on the hybrid model is further studied, and the mean error is used to quantify the prediction effect. By forecasting epidemic size and peak time and simulating the effects of public health interventions, this paper aims to clarify the transmission dynamics of COVID-19 and recommend operation suggestions to slow down the epidemic. It is suggested that the quick detection of cases, sufficient implementation of quarantine and public self-protection behaviours are critical to slow down the epidemic.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keisuke Kondo

AbstractA spatial susceptible–exposed–infectious–recovered (SEIR) model is developed to analyze the effects of restricting interregional mobility on the spatial spread of the coronavirus disease 2019 (COVID-19) infection in Japan. National and local governments have requested that residents refrain from traveling between prefectures during the state of emergency. However, the extent to which restricting interregional mobility prevents infection expansion is unclear. The spatial SEIR model describes the spatial spread pattern of COVID-19 infection when people commute or travel to a prefecture in the daytime and return to their residential prefecture at night. It is assumed that people are exposed to an infection risk during their daytime activities. The spatial spread of COVID-19 infection is simulated by integrating interregional mobility data. According to the simulation results, interregional mobility restrictions can prevent the geographical expansion of the infection. On the other hand, in urban prefectures with many infectious individuals, residents are exposed to higher infection risk when their interregional mobility is restricted. The simulation results also show that interregional mobility restrictions play a limited role in reducing the total number of infected individuals in Japan, suggesting that other non-pharmaceutical interventions should be implemented to reduce the epidemic size.


Sign in / Sign up

Export Citation Format

Share Document