scholarly journals Continuous representability of complete preorders on the space of upper-continuous capacities

2001 ◽  
Vol 2 (1) ◽  
pp. 27 ◽  
Author(s):  
Gianni Bosi ◽  
Romano Isler

<p>Given a compact metric space (X, d), and its Borel σ-algebra Σ, we discuss the existence of a (semi)continuous utility function U for a complete preorder ≤ on a subset M’(X) of the space M(X) of all upper-continuous capacities on Σ, endowed with the weak topology.</p>

2018 ◽  
Vol 20 (07) ◽  
pp. 1750086 ◽  
Author(s):  
Keonhee Lee ◽  
C. A. Morales ◽  
Bomi Shin

We prove that the set of expansive measures of a homeomorphism of a compact metric space is a [Formula: see text] subset of the space of Borel probability measures equipped with the weak* topology. Next that every expansive measure of a homeomorphism of a compact metric space can be weak* approximated by expansive measures with invariant support. In addition, if the expansive measures of a homeomorphism of a compact metric space are dense in the space of Borel probability measures, then there is an expansive measure whose support is both invariant and close to the whole space with respect to the Hausdorff metric. Henceforth, if the expansive measures are dense in the space of Borel probability measures, the set of heteroclinic points has no interior and the space has no isolated points.


2020 ◽  
pp. 1-10
Author(s):  
NILSON C. BERNARDES ◽  
UDAYAN B. DARJI ◽  
RÔMULO M. VERMERSCH

Abstract Let $(X,T)$ be a topological dynamical system consisting of a compact metric space X and a continuous surjective map $T : X \to X$ . By using local entropy theory, we prove that $(X,T)$ has uniformly positive entropy if and only if so does the induced system $({\mathcal {M}}(X),\widetilde {T})$ on the space of Borel probability measures endowed with the weak* topology. This result can be seen as a version for the notion of uniformly positive entropy of the corresponding result for topological entropy due to Glasner and Weiss.


2020 ◽  
pp. 1-23
Author(s):  
TUYEN TRUNG TRUONG

Abstract A strong submeasure on a compact metric space X is a sub-linear and bounded operator on the space of continuous functions on X. A strong submeasure is positive if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure is the supremum of a non-empty collection of measures whose masses are uniformly bounded from above. There are many natural examples of continuous maps of the form $f:U\rightarrow X$ , where X is a compact metric space and $U\subset X$ is an open-dense subset, where f cannot extend to a reasonable function on X. We can mention cases such as transcendental maps of $\mathbb {C}$ , meromorphic maps on compact complex varieties, or continuous self-maps $f:U\rightarrow U$ of a dense open subset $U\subset X$ where X is a compact metric space. For the aforementioned mentioned the use of measures is not sufficient to establish the basic properties of ergodic theory, such as the existence of invariant measures or a reasonable definition of measure-theoretic entropy and topological entropy. In this paper we show that strong submeasures can be used to completely resolve the issue and establish these basic properties. In another paper we apply strong submeasures to the intersection of positive closed $(1,1)$ currents on compact Kähler manifolds.


2020 ◽  
pp. 1-18
Author(s):  
NIKOLAI EDEKO

Abstract We consider a locally path-connected compact metric space K with finite first Betti number $\textrm {b}_1(K)$ and a flow $(K, G)$ on K such that G is abelian and all G-invariant functions $f\,{\in}\, \text{\rm C}(K)$ are constant. We prove that every equicontinuous factor of the flow $(K, G)$ is isomorphic to a flow on a compact abelian Lie group of dimension less than ${\textrm {b}_1(K)}/{\textrm {b}_0(K)}$ . For this purpose, we use and provide a new proof for Theorem 2.12 of Hauser and Jäger [Monotonicity of maximal equicontinuous factors and an application to toral flows. Proc. Amer. Math. Soc.147 (2019), 4539–4554], which states that for a flow on a locally connected compact space the quotient map onto the maximal equicontinuous factor is monotone, i.e., has connected fibers. Our alternative proof is a simple consequence of a new characterization of the monotonicity of a quotient map $p\colon K\to L$ between locally connected compact spaces K and L that we obtain by characterizing the local connectedness of K in terms of the Banach lattice $\textrm {C}(K)$ .


1980 ◽  
Vol 17 (1) ◽  
pp. 297-299
Author(s):  
Arun P. Sanghvi

This paper describes some sufficient conditions that ensure the convergence of successive random applications of a family of mappings {Γα : α ∈ A} on a compact metric space (X, d) to a stochastic fixed point. The results are similar in spirit to a recent result of Yahav (1975).


2001 ◽  
Vol 2 (1) ◽  
pp. 51 ◽  
Author(s):  
Francisco Balibrea ◽  
J.S. Cánovas ◽  
A. Linero

<p>We present some results concerning the topological dynamics of antitriangular maps, F:X<sup>2</sup>→ X<sup>2 </sup>with the formvF(x,y)=(g(y),f(x)), where (X,d) is a compact metric space and f,g : X→ X are continuous maps. We make an special analysis in the case of X = [0,1].</p>


2021 ◽  
Vol 6 (10) ◽  
pp. 10495-10505
Author(s):  
Risong Li ◽  
◽  
Xiaofang Yang ◽  
Yongxi Jiang ◽  
Tianxiu Lu ◽  
...  

<abstract><p>As a stronger form of multi-sensitivity, the notion of ergodic multi-sensitivity (resp. strongly ergodically multi-sensitivity) is introduced. In particularly, it is proved that every topologically double ergodic continuous selfmap (resp. topologically double strongly ergodic selfmap) on a compact metric space is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive). And for any given integer $ m\geq 2 $, $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ f^{m} $. Also, it is shown that if $ f $ is a continuous surjection, then $ f $ is ergodically multi-sensitive (resp. strongly ergodically multi-sensitive) if and only if so is $ \sigma_{f} $, where $ \sigma_{f} $ is the shift selfmap on the inverse limit space $ \lim\limits_{\leftarrow}(X, f) $. Moreover, it is proved that if $ f:X\rightarrow X $ (resp. $ g:Y\rightarrow Y $) is a map on a nontrivial metric space $ (X, d) $ (resp. $ (Y, d') $), and $ \pi $ is a semiopen factor map between $ (X, f) $ and $ (Y, g) $, then the ergodic multi-sensitivity (resp. the strongly ergodic multi-sensitivity) of $ g $ implies the same property of $ f $.</p></abstract>


2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Beata Derȩgowska ◽  
Beata Gryszka ◽  
Karol Gryszka ◽  
Paweł Wójcik

AbstractThe investigations of the smooth points in the spaces of continuous function were started by Banach in 1932 considering function space $$\mathcal {C}(\Omega )$$ C ( Ω ) . Singer and Sundaresan extended the result of Banach to the space of vector valued continuous functions $$\mathcal {C}(\mathcal {T},E)$$ C ( T , E ) , where $$\mathcal {T}$$ T is a compact metric space. The aim of this paper is to present a description of semi-smooth points in spaces of continuous functions $$\mathcal {C}_0(\mathcal {T},E)$$ C 0 ( T , E ) (instead of smooth points). Moreover, we also find necessary and sufficient condition for semi-smoothness in the general case.


Sign in / Sign up

Export Citation Format

Share Document