scholarly journals Big Data Sources for Private Consumption Estimation: Evidence from Credit and Debit Card Records

Author(s):  
María Rosalía Vicente ◽  
María Valdivieso-Anívarro
2020 ◽  
Author(s):  
Bankole Olatosi ◽  
Jiajia Zhang ◽  
Sharon Weissman ◽  
Zhenlong Li ◽  
Jianjun Hu ◽  
...  

BACKGROUND The Coronavirus Disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) remains a serious global pandemic. Currently, all age groups are at risk for infection but the elderly and persons with underlying health conditions are at higher risk of severe complications. In the United States (US), the pandemic curve is rapidly changing with over 6,786,352 cases and 199,024 deaths reported. South Carolina (SC) as of 9/21/2020 reported 138,624 cases and 3,212 deaths across the state. OBJECTIVE The growing availability of COVID-19 data provides a basis for deploying Big Data science to leverage multitudinal and multimodal data sources for incremental learning. Doing this requires the acquisition and collation of multiple data sources at the individual and county level. METHODS The population for the comprehensive database comes from statewide COVID-19 testing surveillance data (March 2020- till present) for all SC COVID-19 patients (N≈140,000). This project will 1) connect multiple partner data sources for prediction and intelligence gathering, 2) build a REDCap database that links de-identified multitudinal and multimodal data sources useful for machine learning and deep learning algorithms to enable further studies. Additional data will include hospital based COVID-19 patient registries, Health Sciences South Carolina (HSSC) data, data from the office of Revenue and Fiscal Affairs (RFA), and Area Health Resource Files (AHRF). RESULTS The project was funded as of June 2020 by the National Institutes for Health. CONCLUSIONS The development of such a linked and integrated database will allow for the identification of important predictors of short- and long-term clinical outcomes for SC COVID-19 patients using data science.


Author(s):  
Marco Angrisani ◽  
Anya Samek ◽  
Arie Kapteyn

The number of data sources available for academic research on retirement economics and policy has increased rapidly in the past two decades. Data quality and comparability across studies have also improved considerably, with survey questionnaires progressively converging towards common ways of eliciting the same measurable concepts. Probability-based Internet panels have become a more accepted and recognized tool to obtain research data, allowing for fast, flexible, and cost-effective data collection compared to more traditional modes such as in-person and phone interviews. In an era of big data, academic research has also increasingly been able to access administrative records (e.g., Kostøl and Mogstad, 2014; Cesarini et al., 2016), private-sector financial records (e.g., Gelman et al., 2014), and administrative data married with surveys (Ameriks et al., 2020), to answer questions that could not be successfully tackled otherwise.


2021 ◽  
Vol 37 (1) ◽  
pp. 161-169
Author(s):  
Dominik Rozkrut ◽  
Olga Świerkot-Strużewska ◽  
Gemma Van Halderen

Never has there been a more exciting time to be an official statistician. The data revolution is responding to the demands of the CoVID-19 pandemic and a complex sustainable development agenda to improve how data is produced and used, to close data gaps to prevent discrimination, to build capacity and data literacy, to modernize data collection systems and to liberate data to promote transparency and accountability. But can all data be liberated in the production and communication of official statistics? This paper explores the UN Fundamental Principles of Official Statistics in the context of eight new and big data sources. The paper concludes each data source can be used for the production of official statistics in adherence with the Fundamental Principles and argues these data sources should be used if National Statistical Systems are to adhere to the first Fundamental Principle of compiling and making available official statistics that honor citizen’s entitlement to public information.


Omega ◽  
2021 ◽  
pp. 102479
Author(s):  
Zhongbao Zhou ◽  
Meng Gao ◽  
Helu Xiao ◽  
Rui Wang ◽  
Wenbin Liu

2018 ◽  
Vol 130 ◽  
pp. 99-113 ◽  
Author(s):  
Desamparados Blazquez ◽  
Josep Domenech

2014 ◽  
Vol 23 (01) ◽  
pp. 27-35 ◽  
Author(s):  
S. de Lusignan ◽  
S-T. Liaw ◽  
C. Kuziemsky ◽  
F. Mold ◽  
P. Krause ◽  
...  

Summary Background: Generally benefits and risks of vaccines can be determined from studies carried out as part of regulatory compliance, followed by surveillance of routine data; however there are some rarer and more long term events that require new methods. Big data generated by increasingly affordable personalised computing, and from pervasive computing devices is rapidly growing and low cost, high volume, cloud computing makes the processing of these data inexpensive. Objective: To describe how big data and related analytical methods might be applied to assess the benefits and risks of vaccines. Method: We reviewed the literature on the use of big data to improve health, applied to generic vaccine use cases, that illustrate benefits and risks of vaccination. We defined a use case as the interaction between a user and an information system to achieve a goal. We used flu vaccination and pre-school childhood immunisation as exemplars. Results: We reviewed three big data use cases relevant to assessing vaccine benefits and risks: (i) Big data processing using crowd-sourcing, distributed big data processing, and predictive analytics, (ii) Data integration from heterogeneous big data sources, e.g. the increasing range of devices in the “internet of things”, and (iii) Real-time monitoring for the direct monitoring of epidemics as well as vaccine effects via social media and other data sources. Conclusions: Big data raises new ethical dilemmas, though its analysis methods can bring complementary real-time capabilities for monitoring epidemics and assessing vaccine benefit-risk balance.


2021 ◽  
Author(s):  
Naveen Kunnathuvalappil Hariharan

As organizations' desire for data grows, so does their search for data sources that are both usable and reliable.Businesses can obtain and collect big data in a variety of locations, both inside and outside their own walls.This study aims to investigate the various data sources for business intelligence. For business intelligence,there are three types of data: internal data, external data, and personal data. Internal data is mostly kept indatabases, which serve as the backbone of an enterprise information system and are known as transactionalsystems or operational systems. This information, however, is not always sufficient. If the company wants toanswer market and industry questions or better understand future customers, the analytics team may need to look beyond the company's own data sources. Organizations must have access to a variety of data sources in order to answer the key questions that guide their initiatives. Internal sources, external public sources, andcollaboration with a big data expert could all be beneficial. Companies who are able to extract relevant datafrom their mountain of data acquire new perspectives on their business, allowing them to become morecompetitive


Sign in / Sign up

Export Citation Format

Share Document