scholarly journals On the connectedness of the branch locus of the moduli space of Riemann surfaces

Author(s):  
Gabriel Bartolini ◽  
Antonio F. Costa ◽  
Milagros Izquierdo ◽  
Ana M. Porto
2010 ◽  
Vol 52 (2) ◽  
pp. 401-408 ◽  
Author(s):  
ANTONIO F. COSTA ◽  
MILAGROS IZQUIERDO

AbstractUsing uniformization of Riemann surfaces by Fuchsian groups and the equisymmetric stratification of the branch locus of the moduli space of surfaces of genus 4, we prove its connectedness. As a consequence, one can deform a surface of genus 4 with automorphisms, i.e. symmetric, to any other symmetric genus 4 surface through a path consisting entirely of symmetric surfaces.


Author(s):  
Gabriel Bartolini ◽  
Antonio F. Costa ◽  
Milagros Izquierdo ◽  
Ana M. Porto

2012 ◽  
Vol 111 (1) ◽  
pp. 53 ◽  
Author(s):  
Antonio F. Costa ◽  
Milagros Izquierdo

Let $g$ be an integer $\geq3$ and let $B_{g}=\{X\in\mathcal{M}_{g}: \mathrm{Aut}(X)\neq Id\}$ be the branch locus of $M_{g}$, where $M_{g}$ denotes the moduli space of compact Riemann surfaces of genus $g$. The structure of $B_{g}$ is of substantial interest because $B_{g}$ corresponds to the singularities of the action of the modular group on the Teichmüller space of surfaces of genus $g$ (see [14]). Kulkarni ([15], see also [13]) proved the existence of isolated points in the branch loci of the moduli spaces of Riemann surfaces. In this work we study the isolated connected components of dimension 1 in such loci. These isolated components of dimension one appear if the genus is $g=p-1$ with $p$ prime $\geq11$. We use uniformization by Fuchsian groups and the equisymmetric stratification of the branch loci.


Author(s):  
Benson Farb ◽  
Dan Margalit

The study of the mapping class group Mod(S) is a classical topic that is experiencing a renaissance. It lies at the juncture of geometry, topology, and group theory. This book explains as many important theorems, examples, and techniques as possible, quickly and directly, while at the same time giving full details and keeping the text nearly self-contained. The book is suitable for graduate students. It begins by explaining the main group-theoretical properties of Mod(S), from finite generation by Dehn twists and low-dimensional homology to the Dehn–Nielsen–Baer–theorem. Along the way, central objects and tools are introduced, such as the Birman exact sequence, the complex of curves, the braid group, the symplectic representation, and the Torelli group. The book then introduces Teichmüller space and its geometry, and uses the action of Mod(S) on it to prove the Nielsen-Thurston classification of surface homeomorphisms. Topics include the topology of the moduli space of Riemann surfaces, the connection with surface bundles, pseudo-Anosov theory, and Thurston's approach to the classification.


Author(s):  
Kazutoshi Ohta ◽  
Norisuke Sakai

Abstract We study the moduli space volume of BPS vortices in quiver gauge theories on compact Riemann surfaces. The existence of BPS vortices imposes constraints on the quiver gauge theories. We show that the moduli space volume is given by a vev of a suitable cohomological operator (volume operator) in a supersymmetric quiver gauge theory, where BPS equations of the vortices are embedded. In the supersymmetric gauge theory, the moduli space volume is exactly evaluated as a contour integral by using the localization. Graph theory is useful to construct the supersymmetric quiver gauge theory and to derive the volume formula. The contour integral formula of the volume (generalization of the Jeffrey-Kirwan residue formula) leads to the Bradlow bounds (upper bounds on the vorticity by the area of the Riemann surface divided by the intrinsic size of the vortex). We give some examples of various quiver gauge theories and discuss properties of the moduli space volume in these theories. Our formula are applied to the volume of the vortex moduli space in the gauged non-linear sigma model with CPN target space, which is obtained by a strong coupling limit of a parent quiver gauge theory. We also discuss a non-Abelian generalization of the quiver gauge theory and “Abelianization” of the volume formula.


Sign in / Sign up

Export Citation Format

Share Document