scholarly journals Isolated points in the branch locus of the moduli space of compact Riemann surfaces

Author(s):  
Ravi S. Kulkarni
2012 ◽  
Vol 111 (1) ◽  
pp. 53 ◽  
Author(s):  
Antonio F. Costa ◽  
Milagros Izquierdo

Let $g$ be an integer $\geq3$ and let $B_{g}=\{X\in\mathcal{M}_{g}: \mathrm{Aut}(X)\neq Id\}$ be the branch locus of $M_{g}$, where $M_{g}$ denotes the moduli space of compact Riemann surfaces of genus $g$. The structure of $B_{g}$ is of substantial interest because $B_{g}$ corresponds to the singularities of the action of the modular group on the Teichmüller space of surfaces of genus $g$ (see [14]). Kulkarni ([15], see also [13]) proved the existence of isolated points in the branch loci of the moduli spaces of Riemann surfaces. In this work we study the isolated connected components of dimension 1 in such loci. These isolated components of dimension one appear if the genus is $g=p-1$ with $p$ prime $\geq11$. We use uniformization by Fuchsian groups and the equisymmetric stratification of the branch loci.


2010 ◽  
Vol 52 (2) ◽  
pp. 401-408 ◽  
Author(s):  
ANTONIO F. COSTA ◽  
MILAGROS IZQUIERDO

AbstractUsing uniformization of Riemann surfaces by Fuchsian groups and the equisymmetric stratification of the branch locus of the moduli space of surfaces of genus 4, we prove its connectedness. As a consequence, one can deform a surface of genus 4 with automorphisms, i.e. symmetric, to any other symmetric genus 4 surface through a path consisting entirely of symmetric surfaces.


Author(s):  
Gabriel Bartolini ◽  
Antonio F. Costa ◽  
Milagros Izquierdo ◽  
Ana M. Porto

1991 ◽  
Vol 110 (3) ◽  
pp. 461-466 ◽  
Author(s):  
Gabino González Díez ◽  
William J. Harvey

Letgdenote the moduli space of compact Riemann surfaces of genusg> 3. It is known thatgis a non-complete quasi-projective variety that contains many complete curves. This is because the Satake compactificationgofgis projective and the boundary\has co-dimension 2; thus by intersectingwith hypersurfaces in sufficiently general position one obtains a complete curve ingpassing through any given set of points [8].


2015 ◽  
Vol 17 (04) ◽  
pp. 1550016 ◽  
Author(s):  
David Radnell ◽  
Eric Schippers ◽  
Wolfgang Staubach

We consider bordered Riemann surfaces which are biholomorphic to compact Riemann surfaces of genus g with n regions biholomorphic to the disk removed. We define a refined Teichmüller space of such Riemann surfaces (which we refer to as the WP-class Teichmüller space) and demonstrate that in the case that 2g + 2 - n > 0, this refined Teichmüller space is a Hilbert manifold. The inclusion map from the refined Teichmüller space into the usual Teichmüller space (which is a Banach manifold) is holomorphic. We also show that the rigged moduli space of Riemann surfaces with non-overlapping holomorphic maps, appearing in conformal field theory, is a complex Hilbert manifold. This result requires an analytic reformulation of the moduli space, by enlarging the set of non-overlapping mappings to a class of maps intermediate between analytically extendible maps and quasiconformally extendible maps. Finally, we show that the rigged moduli space is the quotient of the refined Teichmüller space by a properly discontinuous group of biholomorphisms.


2011 ◽  
Vol 22 (02) ◽  
pp. 223-279 ◽  
Author(s):  
ANDRÉ GAMA OLIVEIRA

Given a closed, oriented surface X of genus g ≥ 2, and a semisimple Lie group G, let [Formula: see text] be the moduli space of reductive representations of π1X in G. We determine the number of connected components of [Formula: see text], for n ≥ 4 even. In order to have a first division of connected components, we first classify real projective bundles over such a surface. Then we achieve our goal, using holomorphic methods through the theory of Higgs bundles over compact Riemann surfaces. We also show that the complement of the Hitchin component in [Formula: see text] is homotopically equivalent to [Formula: see text].


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Paul-Konstantin Oehlmann

Abstract In this note we consider smooth elliptic Calabi-Yau four-folds whose fiber ceases to be flat over compact Riemann surfaces of genus g in the base. These non-flat fibers contribute Kähler moduli to the four-fold but also add to the three-form cohomology for g > 0. In F-/M-theory these sectors are to be interpreted as compactifications of six/five dimensional $$ \mathcal{N} $$ N = (1, 0) superconformal matter theories. The three-form cohomology leads to additional chiral singlets proportional to the dimension of five dimensional Coulomb branch of those sectors. We construct explicit examples for E-string theories as well as higher rank cases. For the E-string theories we further investigate conifold transitions that remove those non-flat fibers. First we show how non-flat fibers can be deformed from curves down to isolated points in the base. This removes the chiral singlet of the three-forms and leads to non-perturbative four-point couplings among matter fields which can be understood as remnants of the former E-string. Alternatively the non-flat fibers can be avoided by performing birational base changes analogous to 6D tensor branches. For compact bases these transitions alternate all Hodge numbers but leave the Euler number invariant.


Sign in / Sign up

Export Citation Format

Share Document