Manifold Learning for Super Resolution

2018 ◽  
Author(s):  
Eduardo Pérez Pellitero

The development pace of high-resolution displays has been so fast in the recent years that many images acquired with low-end capture devices are already outdated or will be shortly in time. Super Resolution is central to match the resolution of the already existing image content to that of current and future high resolution displays and applications. This dissertation is focused on learning how to upscale images from the statistics of natural images. We build on a sparsity model that uses learned coupled low- and high-resolution dictionaries in order to upscale images, and move towards a more efficient L2 regularization scheme. Instead of using a patch-todictionary decomposition, we propose a fully collaborative neighbor embedding approach. We study the positive impact of antipodally invariant metrics for linear regression frameworks, and extend them by also taking into consideration the dihedral group of transforms (i.e. rotations and reflections), as a group of symmetries within the ...

2021 ◽  
Vol 13 (10) ◽  
pp. 1944
Author(s):  
Xiaoming Liu ◽  
Menghua Wang

The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite has been a reliable source of ocean color data products, including five moderate (M) bands and one imagery (I) band normalized water-leaving radiance spectra nLw(λ). The spatial resolutions of the M-band and I-band nLw(λ) are 750 m and 375 m, respectively. With the technique of convolutional neural network (CNN), the M-band nLw(λ) imagery can be super-resolved from 750 m to 375 m spatial resolution by leveraging the high spatial resolution features of I1-band nLw(λ) data. However, it is also important to enhance the spatial resolution of VIIRS-derived chlorophyll-a (Chl-a) concentration and the water diffuse attenuation coefficient at the wavelength of 490 nm (Kd(490)), as well as other biological and biogeochemical products. In this study, we describe our effort to derive high-resolution Kd(490) and Chl-a data based on super-resolved nLw(λ) images at the VIIRS five M-bands. To improve the network performance over extremely turbid coastal oceans and inland waters, the networks are retrained with a training dataset including ocean color data from the Bohai Sea, Baltic Sea, and La Plata River Estuary, covering water types from clear open oceans to moderately turbid and highly turbid waters. The evaluation results show that the super-resolved Kd(490) image is much sharper than the original one, and has more detailed fine spatial structures. A similar enhancement of finer structures is also found in the super-resolved Chl-a images. Chl-a filaments are much sharper and thinner in the super-resolved image, and some of the very fine spatial features that are not shown in the original images appear in the super-resolved Chl-a imageries. The networks are also applied to four other coastal and inland water regions. The results show that super-resolution occurs mainly on pixels of Chl-a and Kd(490) features, especially on the feature edges and locations with a large spatial gradient. The biases between the original M-band images and super-resolved high-resolution images are small for both Chl-a and Kd(490) in moderately to extremely turbid coastal oceans and inland waters, indicating that the super-resolution process does not change the mean values of the original images.


2021 ◽  
Vol 13 (11) ◽  
pp. 2185
Author(s):  
Yu Tao ◽  
Sylvain Douté ◽  
Jan-Peter Muller ◽  
Susan J. Conway ◽  
Nicolas Thomas ◽  
...  

We introduce a novel ultra-high-resolution Digital Terrain Model (DTM) processing system using a combination of photogrammetric 3D reconstruction, image co-registration, image super-resolution restoration, shape-from-shading DTM refinement, and 3D co-alignment methods. Technical details of the method are described, and results are demonstrated using a 4 m/pixel Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) panchromatic image and an overlapping 6 m/pixel Mars Reconnaissance Orbiter Context Camera (CTX) stereo pair to produce a 1 m/pixel CaSSIS Super-Resolution Restoration (SRR) DTM for different areas over Oxia Planum on Mars—the future ESA ExoMars 2022 Rosalind Franklin rover’s landing site. Quantitative assessments are made using profile measurements and the counting of resolvable craters, in comparison with the publicly available 1 m/pixel High-Resolution Imaging Experiment (HiRISE) DTM. These assessments demonstrate that the final resultant 1 m/pixel CaSSIS DTM from the proposed processing system has achieved comparable and sometimes more detailed 3D reconstruction compared to the overlapping HiRISE DTM.


Author(s):  
R. S. Hansen ◽  
D. W. Waldram ◽  
T. Q. Thai ◽  
R. B. Berke

Abstract Background High-resolution Digital Image Correlation (DIC) measurements have previously been produced by stitching of neighboring images, which often requires short working distances. Separately, the image processing community has developed super resolution (SR) imaging techniques, which improve resolution by combining multiple overlapping images. Objective This work investigates the novel pairing of super resolution with digital image correlation, as an alternative method to produce high-resolution full-field strain measurements. Methods First, an image reconstruction test is performed, comparing the ability of three previously published SR algorithms to replicate a high-resolution image. Second, an applied translation is compared against DIC measurement using both low- and super-resolution images. Third, a ring sample is mechanically deformed and DIC strain measurements from low- and super-resolution images are compared. Results SR measurements show improvements compared to low-resolution images, although they do not perfectly replicate the high-resolution image. SR-DIC demonstrates reduced error and improved confidence in measuring rigid body translation when compared to low resolution alternatives, and it also shows improvement in spatial resolution for strain measurements of ring deformation. Conclusions Super resolution imaging can be effectively paired with Digital Image Correlation, offering improved spatial resolution, reduced error, and increased measurement confidence.


2013 ◽  
Vol 202 (3) ◽  
pp. 579-595 ◽  
Author(s):  
Sébastien Britton ◽  
Julia Coates ◽  
Stephen P. Jackson

DNA double-strand breaks (DSBs) are the most toxic of all genomic insults, and pathways dealing with their signaling and repair are crucial to prevent cancer and for immune system development. Despite intense investigations, our knowledge of these pathways has been technically limited by our inability to detect the main repair factors at DSBs in cells. In this paper, we present an original method that involves a combination of ribonuclease- and detergent-based preextraction with high-resolution microscopy. This method allows direct visualization of previously hidden repair complexes, including the main DSB sensor Ku, at virtually any type of DSB, including those induced by anticancer agents. We demonstrate its broad range of applications by coupling it to laser microirradiation, super-resolution microscopy, and single-molecule counting to investigate the spatial organization and composition of repair factories. Furthermore, we use our method to monitor DNA repair and identify mechanisms of repair pathway choice, and we show its utility in defining cellular sensitivities and resistance mechanisms to anticancer agents.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Regan P Moore ◽  
Ellen C O’Shaughnessy ◽  
Yu Shi ◽  
Ana T Nogueira ◽  
Katelyn M Heath ◽  
...  

We present a microfluidic device compatible with high resolution light sheet and super-resolution microscopy. Our device is a 150 μm thick chamber with a transparent fluorinated ethylene propylene (FEP) cover...


2020 ◽  
Vol 10 (12) ◽  
pp. 4282
Author(s):  
Ghada Zamzmi ◽  
Sivaramakrishnan Rajaraman ◽  
Sameer Antani

Medical images are acquired at different resolutions based on clinical goals or available technology. In general, however, high-resolution images with fine structural details are preferred for visual task analysis. Recognizing this significance, several deep learning networks have been proposed to enhance medical images for reliable automated interpretation. These deep networks are often computationally complex and require a massive number of parameters, which restrict them to highly capable computing platforms with large memory banks. In this paper, we propose an efficient deep learning approach, called Hydra, which simultaneously reduces computational complexity and improves performance. The Hydra consists of a trunk and several computing heads. The trunk is a super-resolution model that learns the mapping from low-resolution to high-resolution images. It has a simple architecture that is trained using multiple scales at once to minimize a proposed learning-loss function. We also propose to append multiple task-specific heads to the trained Hydra trunk for simultaneous learning of multiple visual tasks in medical images. The Hydra is evaluated on publicly available chest X-ray image collections to perform image enhancement, lung segmentation, and abnormality classification. Our experimental results support our claims and demonstrate that the proposed approach can improve the performance of super-resolution and visual task analysis in medical images at a remarkably reduced computational cost.


Author(s):  
F. Pineda ◽  
V. Ayma ◽  
C. Beltran

Abstract. High-resolution satellite images have always been in high demand due to the greater detail and precision they offer, as well as the wide scope of the fields in which they could be applied; however, satellites in operation offering very high-resolution (VHR) images has experienced an important increase, but they remain as a smaller proportion against existing lower resolution (HR) satellites. Recent models of convolutional neural networks (CNN) are very suitable for applications with image processing, like resolution enhancement of images; but in order to obtain an acceptable result, it is important, not only to define the kind of CNN architecture but the reference set of images to train the model. Our work proposes an alternative to improve the spatial resolution of HR images obtained by Sentinel-2 satellite by using the VHR images from PeruSat1, a peruvian satellite, which serve as the reference for the super-resolution approach implementation based on a Generative Adversarial Network (GAN) model, as an alternative for obtaining VHR images. The VHR PeruSat-1 image dataset is used for the training process of the network. The results obtained were analyzed considering the Peak Signal to Noise Ratios (PSNR) and the Structural Similarity (SSIM). Finally, some visual outcomes, over a given testing dataset, are presented so the performance of the model could be analyzed as well.


2021 ◽  
Author(s):  
Rabhi Fathan Muhammad ◽  
Tina Melinda

This study was conducted to analyze the influence of price (X1), service quality (X2) and promotions (X3) on customer satisfaction at Bu Rajab Resto Pancing and Cottage. The study used a quantitative approach and was conducted from March to June 2020. Purposive sampling was used. 120 people were included in the research and 97 people were selected as samples. Participants were customers of Bu Rajab Resto Pancing and Cottage who had visited at least 2 times. A questionnaire was used for data collection. Data analysis involved linear regression, hypothesis testing and classical assumption tests, using the SPSS program. Price and service quality had a significantly positive impact on customer satisfaction, but promotions did not. Keywords: price, service quality, promotion, customer satisfaction


Sign in / Sign up

Export Citation Format

Share Document