scholarly journals Acousto-ultrasonics for defect assessment of composite materials

2002 ◽  
Author(s):  
◽  
Kevin M. Dugmore

The experiments and their results contained herein will form the basis for the development of a portable non-destructive testing device for composite structures. This device is to be capable of detecting any of a variety of defects and assessing their severity within a short time

2020 ◽  
Vol 12 (4) ◽  
pp. 168781402091376 ◽  
Author(s):  
Bing Wang ◽  
Shuncong Zhong ◽  
Tung-Lik Lee ◽  
Kevin S Fancey ◽  
Jiawei Mi

Composite materials/structures are advancing in product efficiency, cost-effectiveness and the development of superior specific properties. There are increasing demands in their applications to load-carrying structures in aerospace, wind turbines, transportation, medical equipment and so on. Thus, robust and reliable non-destructive testing of composites is essential to reduce safety concerns and maintenance costs. There have been various non-destructive testing methods built upon different principles for quality assurance during the whole lifecycle of a composite product. This article reviews the most established non-destructive testing techniques for detection and evaluation of defects/damage evolution in composites. These include acoustic emission, ultrasonic testing, infrared thermography, terahertz testing, shearography, digital image correlation, as well as X-ray and neutron imaging. For each non-destructive testing technique, we cover a brief historical background, principles, standard practices, equipment and facilities used for composite research. We also compare and discuss their benefits and limitations and further summarise their capabilities and applications to composite structures. Each non-destructive testing technique has its own potential and rarely achieves a full-scale diagnosis of structural integrity. Future development of non-destructive testing techniques for composites will be directed towards intelligent and automated inspection systems with high accuracy and efficient data processing capabilities.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 621 ◽  
Author(s):  
Wongi S. Na ◽  
Jongdae Baek

Detecting the depth and size of debonding in composite structures is essential for assessing structural safety as it can weaken the structure possibly leading to a failure. As composite materials are used in various fields up to date including aircrafts and bridges, inspections are carried out to maintain structural integrity. Although many inspection methods exist for detection damage of composites, most of the techniques require trained experts or a large equipment that can be time consuming. In this study, the possibility of using the piezoelectric material-based non-destructive method known as the electromechanical impedance (EMI) technique is used to identify the depth of debonding damage of glass epoxy laminates. Laminates with various thicknesses were prepared and tested to seek for the possibility of using the EMI technique for identifying the depth of debonding. Results show promising outcome for bringing the EMI technique a step closer for commercialization.


2021 ◽  
Vol 11 (22) ◽  
pp. 10763
Author(s):  
Dong-Woo Seo ◽  
Kyu-San Jung ◽  
Yi-Seul Kim ◽  
Hyung-Jin Kim ◽  
Wongi S. Na

To date, the application of composite materials has been used throughout the globe due to its advantages, such as corrosion resistance, high strength, design flexibility, and light weight. However, the joining of composite materials is usually achieved with adhesives, where debonding of parts can cause unexpected failure. Thus, detecting and locating defects due to impact or fatigue stresses at an early stage is crucial to ensure safety. Various non-destructive testing (NDT) techniques have been used to detect defects in composite structures, where this study proposes an improved approach of using one of the NDT techniques to detect and locate debonding of glass fiber epoxy plates. Here, the electromechanical impedance (EMI) technique is used with a new way of detecting defects using a movable device. This idea could reduce the overall cost of the monitoring system as the conventional EMI technique requires one to permanently attach a large number of piezoelectric transducers when monitoring large structures. The performance of the proposed idea is tested against another temporary attachment method to investigate the possibility of using the new idea for monitoring debonding in composite structures.


2020 ◽  
Vol 2020 (1) ◽  
pp. 34-52
Author(s):  
Rafał Szymański

AbstractThe article is in line with the contemporary interests of companies from the aviation industry. It describes thermoplastic material and inspection techniques used in leading aviation companies. The subject matter of non-destructive testing currently used in aircraft inspections of composite structures is approximated and each of the methods used is briefly described. The characteristics of carbon preimpregnates in thermoplastic matrix are also presented, as well as types of thermoplastic materials and examples of their application in surface ship construction. The advantages, disadvantages and limitations for these materials are listed. The focus was put on the explanation of the ultrasonic method, which is the most commonly used method during the inspection of composite structures at the production and exploitation stage. Describing the ultrasonic method, the focus was put on echo pulse technique and the use of modern Phased Array heads. Incompatibilities most frequently occurring and detected in composite materials with thermosetting and thermoplastic matrix were listed and described. A thermoplastic flat composite panel made of carbon pre-impregnate in a high-temperature matrix (over 300°C), which was the subject of the study, was described. The results of non-destructive testing (ultrasonic method) of thermoplastic panel were presented and conclusions were drawn.


2018 ◽  
Vol 170 ◽  
pp. 03005 ◽  
Author(s):  
P. Kauffmann ◽  
M.-A. Ploix ◽  
J.-F. Chaix ◽  
C. Gueudré ◽  
G. Corneloup ◽  
...  

The inspection and control of sodium-cooled fast reactors (SFR) is a major issue for the nuclear industry. Ultrasonic solutions are under study because of the opacity of liquid sodium. In this paper, the use of leaky Lamb waves is considered for non-destructive testing (NDT) on parallel and immersed structures assimilated as plates. The first phase of our approach involved studying the propagation properties of leaky Lamb waves. Equations that model the propagation of Lamb waves in an immersed plate were solved numerically. The phase velocity can be experimentally measured using a two dimensional Fourier transform. The group velocity can be experimentally measured using a short-time Fourier transform technique. Attenuation of leaky Lamb waves is mostly due to the re-emission of energy into the surrounding fluid, and it can be measured by these two techniques.


2019 ◽  
Vol 9 (1) ◽  
pp. 3778-3781
Author(s):  
M. S. Mohammed ◽  
K. Ki-Seong

Ultrasonic non-destructive testing signal can be decomposed into a set of chirplet signals, which makes the chirplet transform a fitting ultrasonic signal analysis and processing method. Moreover, compared to wavelet transform, short-time Fourier transform and Gabor transform, chirplet transform is a comprehensive signal approximation method, nevertheless, the former methods gained more popularity in the ultrasonic signal processing research. In this paper, the principles of the chirplet transform are explained with a simplified presentation and the studies that used the transform in ultrasonic non-destructive testing and in structural health monitoring are reviewed to expose the existing applications and motivate the research in the potential ones.


Sign in / Sign up

Export Citation Format

Share Document