large structures
Recently Published Documents


TOTAL DOCUMENTS

789
(FIVE YEARS 131)

H-INDEX

46
(FIVE YEARS 3)

Science ◽  
2022 ◽  
Vol 375 (6577) ◽  
Author(s):  
Xianhe Li ◽  
Julian Straub ◽  
Tânia Catarina Medeiros ◽  
Chahat Mehra ◽  
Fabian den Brave ◽  
...  

Mitochondria shed their SPOTs Outer mitochondrial membrane (OMM) function is essential for cellular health. How mitochondria respond to naturally occurring OMM stress is unknown. Li et al . show that, upon infection with the human parasite Toxoplasma gondii , mitochondria shed large structures positive for OMM (SPOTs). SPOT formation required the parasite effector TgMAF1 and its interaction with the host mitochondrial receptor TOM70 and translocase SAM50. TOM70-dependent SPOT formation mediated a depletion of mitochondrial proteins and optimal parasite growth. SPOT-like structures also formed after OMM perturbations independently of infection. Thus, membrane remodeling is a feature of cellular responses to OMM stress that Toxoplasma hijacks during infection. —SMH


Author(s):  
B. Pantò ◽  
L. Macorini ◽  
B. A. Izzuddin

AbstractA great proportion of the existing architectural heritage, including historical and monumental constructions, is made of brick/block masonry. This material shows a strong anisotropic behaviour resulting from the specific arrangement of units and mortar joints, which renders the accurate simulation of the masonry response a complex task. In general, mesoscale modelling approaches provide realistic predictions due to the explicit representation of the masonry bond characteristics. However, these detailed models are very computationally demanding and mostly unsuitable for practical assessment of large structures. Macroscale models are more efficient, but they require complex calibration procedures to evaluate model material parameters. This paper presents an advanced continuum macroscale model based on a two-scale nonlinear description for masonry material which requires only simple calibration at structural scale. A continuum strain field is considered at the macroscale level, while a 3D distribution of embedded internal layers allows for the anisotropic mesoscale features at the local level. A damage-plasticity constitutive model is employed to mechanically characterise each internal layer using different material properties along the two main directions on the plane of the masonry panel and along its thickness. The accuracy of the proposed macroscale model is assessed considering the response of structural walls previously tested under in-plane and out-of-plane loading and modelled using the more refined mesoscale strategy. The results achieved confirm the significant potential and the ability of the proposed macroscale description for brick/block masonry to provide accurate and efficient response predictions under different monotonic and cyclic loading conditions.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 240
Author(s):  
Shi Song ◽  
Moritz Braun ◽  
Bjarne Wiegard ◽  
Hauke Herrnring ◽  
Sören Ehlers

H-adaptivity is an effective tool to introduce local mesh refinement in the FEM-based numerical simulation of crack propagation. The implementation of h-adaptivity could benefit the numerical simulation of fatigue or accidental load scenarios involving large structures, such as ship hulls. Meanwhile, in engineering applications, the element deletion method is frequently used to represent cracks. However, the element deletion method has some drawbacks, such as strong mesh dependency and loss of mass or energy. In order to mitigate this problem, the element splitting method could be applied. In this study, a numerical method called ‘h-adaptive element splitting’ (h-AES) is introduced. The h-AES method is applied in FEM programs by combining h-adaptivity with the element splitting method. Two examples using the h-AES method to simulate cracks in large structures under linear-elastic fracture mechanics scenario are presented. The numerical results are verified against analytical solutions. Based on the examples, the h-AES method is proven to be able to introduce mesh refinement in large-scale numerical models that mostly consist of structured coarse meshes, which is also beneficial to the reduction of computational resources. By employing the h-AES method, very small cracks are well represented in large structures without any deletions of elements.


2021 ◽  
Vol 5 (4) ◽  
pp. 191-197
Author(s):  
S. A. Kabanov ◽  
D. S. Kabanov

The article discusses the process of controlling the angular motion of the spoke of a large-sized space-based reflector, taking into account bending vibrations. Currently, large antennas are actively used for receiving and transmitting data. When launching large structures into space, the problem arises of reliably deployment the spokes, since they are packed in a small volume to be able to be installed in a launch vehicle. Due to the possibility of various abnormal situations, such as jamming of elements, engagement of the net, it is necessary to re-deployment the antenna. Therefore, it is important to develop control algorithms that can reliably solve the problems of direct and reverse motion. In the process of deployment and bringing together the elements of the reflector, various deformations appear in the structure. When the antenna spokes are brought together, lateral oscillations make the largest contribution to the oscillatory of the transient process. Currently, elastically deformed elements are used to deployment large-sized reflectors, and a control program is also used. This prevents the control from being adjusted when the deployment conditions change. The paper investigates the possibility of minimizing the vibrations of a structure during its deployment by using optimal control algorithms in real time. The forward and reverse motion of the antenna elements is performed by means of a two-criteria hierarchy optimization. The results of numerical simulation of the optimal rotation of the reflector spoke are presented. The proposed algorithm allows you to choose the optimal control in emergency situations for various types of large reflectors.


Author(s):  
Evgenia M. Tupikova ◽  
Mikhail E. Ershov

To create aesthetically expressive and functional small architectural forms, it is advisable to use reinforced concrete umbrella type shells in the shape of surfaces that can be specified in an analytical form. Hard landscaping is a suitable field of application for insufficiently studied and tested structures, in contrast to large structures of high importance class. The paper gives an example of a trial variant design of a small garden and park structure in the form of an umbrella type shell, during which different types of umbrella surfaces were analyzed and three variants were selected. Among the studied forms are the following surfaces: a paraboloid of rotation, an umbrella-type surface with a sinusoidal generator, an umbrella-type surface with radial waves based on cubic parabolas (with central flat point). The calculation of stress-strain state of three shells under their own weight was carried out using the finite element method and the peculiarities of working under load of each type of structures were revealed, recommendations are given when designing similar structures.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 622
Author(s):  
Loizos Loizou ◽  
Khalegh Barati ◽  
Xuesong Shen ◽  
Binghao Li

The construction industry is a significant source of waste generation in any economy, producing various greenhouse gases, releasing harmful substances into the natural environment, and requiring large areas of land for processing, treatment, and landfilling. The emerging field of off-site prefabrication and assembly is perceived as a viable method to reduce waste and improve sustainability. However, there is a lack of quantifiable research into the difference between off-site prefabrication and on-site, conventional construction for numerous sustainability criteria. This paper focuses on modular construction as an off-site production system, where a framework to compare waste generation of modular and conventional, in-situ construction methods is proposed. This paper aims to quantify these differences. The framework relies on a comprehensive literature review to estimate the waste rates of building materials, which are then applied to realistic case studies in order to determine the differences in waste generation. Overall, modular construction reduces the overall weight of waste by up to 83.2%, for the cases considered. This corresponds to a 47.9% decrease in the cost of waste for large structures. Care must be taken to keep modular wastage as low as possible for a reduced cost of waste to be also present in smaller structures. This reduces the research gap of quantifying the waste differences between conventional and modular construction, and provides thoroughly researched waste rates for future research, while also improving the knowledge of industry stakeholders, informing them of the benefits of modular construction. This allows stakeholders to make more informed decisions when selecting an appropriate construction method.


Author(s):  
Shi Song ◽  
Moritz Braun ◽  
Hauke Herrnring ◽  
Bjarne Wiegard ◽  
Sören Ehlers

H-adaptivity is an effective tool to introduce local mesh refinement in FEM-based numerical simulation of crack propagation. The implementation of h-adaptivity could benefit the numerical simulation of fatigue or accidental load scenarios involving large structures such as ship hulls. In engineering applications, the element deletion method is frequently used to represent cracks. However, the element deletion method has some drawbacks such as strong mesh dependency and loss of mass or energy. In order to mitigate this problem, the element splitting method could be applied. In this study, a numerical method called ‘h-adaptive element splitting’ (h-AES) is introduced. The h-AES method is applied in FEM programs by combining h-adaptivity with the element splitting method. Two examples using the h-AES method to simulate cracks in large structures under linear-elastic fracture mechanics scenario are presented. The numerical results are verified against analytical solutions. Based on the examples, the h-AES method is proven to be able to introduce mesh refinement in large-scale numerical models that consist of structured coarse meshes. By employing the mesh refinement introduced in this paper, very small cracks are well represented in large structures.


2021 ◽  
Author(s):  
Cui-Lian Liu ◽  
Eduard Bobylev ◽  
Brice Kauffmann ◽  
Koen Robeyns ◽  
Yann Garcia ◽  
...  

Non-covalent interactions play an essential role in the folding and self-assembly of large biological assemblies. These interactions are not only a driving force for the formation of large structures but also control conformation and com-plementary shapes of subcomponents that promote the diversity of structures and functions of the resulting assemblies. Understanding how non-covalent interactions direct self-assembly and the effect of conformation and complementary shapes on self-assembled structures will help design artificial supramolecular systems with extended components and functions. Herein, we develop a strategy for controlling more complex self-assembly with lower symmetry and flexible building blocks that combine endohedral non-covalent interactions with a dual curvature in the ligand backbone to give additional shape complementarity. A Diels-Alder reaction was used to break the symmetry of the diazaanthracene units of the ligands to give dual curvature ligands with different shapes and endohedral groups (L1-L3). The self-assembly studies of these ligands demonstrated that non-covalent interactions and shape complementary effectively control the self-assembly and enable the design of cages for supramolecular catalysis.


Sign in / Sign up

Export Citation Format

Share Document