scholarly journals Are there urban signatures in the tropospheric ozone column products derived from satellite measurements?

2010 ◽  
Vol 10 (11) ◽  
pp. 5213-5222 ◽  
Author(s):  
J. Kar ◽  
J. Fishman ◽  
J. K. Creilson ◽  
A. Richter ◽  
J. Ziemke ◽  
...  

Abstract. In view of the proposed geostationary satellite missions to monitor air quality from space, it is important to first assess the capability of the current suite of satellite instruments to provide information on the urban scale pollution. We explore the possibility of detecting urban signatures in the tropospheric column ozone data derived from Total Ozone Mapping Spectrometer (TOMS)/Solar Backscattered Ultraviolet (SBUV) and Ozone Monitoring Instrument (OMI)/Microwave Limb Sounder (MLS) satellite data. We find that distinct isolated plumes of tropospheric ozone near several large and polluted cities around the world may be detected in these data sets. The ozone plumes generally correspond with the tropospheric column NO2 plumes around these cities as observed by the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) instrument. Similar plumes are also seen in tropospheric mean ozone mixing ratio distribution after accounting for the surface and tropopause pressure variations. The total column ozone retrievals indicate fairly significant sensitivity to the lower troposphere over the polluted land areas, which might help explain these detections. These results indicate that ultraviolet (UV) measurements may, in principle, be able to capture the urban signatures and may have implications for future missions using geostationary satellites.

2010 ◽  
Vol 10 (2) ◽  
pp. 3807-3826
Author(s):  
J. Kar ◽  
J. Fishman ◽  
J. K. Creilson ◽  
A. Richter ◽  
J. Ziemke ◽  
...  

Abstract. In view of the proposed geostationary satellite missions to monitor air quality from space, it is important to first assess the capability of the current suite of satellite instruments to provide information on the urban scale pollution. We explore the possibility of detecting urban signatures in the tropospheric column ozone data derived from TOMS/SBUV and OMI/MLS satellite data. We find that distinct isolated plumes of tropospheric ozone near several large and polluted cities around the world may be detected in these data sets. The ozone plumes generally correspond with the tropospheric column NO2 plumes around these cities as observed by the SCIAMACHY instrument. Similar plumes are also seen in tropospheric mean ozone mixing ratio distribution after accounting for the surface and tropopause pressure variations. The total column ozone retrievals indicate fairly significant sensitivity to the lower troposphere over the polluted land areas, which might help explain these detections. These results indicate that UV measurements may, in principle, be able to capture the urban signatures and may have implications for future missions using geostationary satellites.


2021 ◽  
Author(s):  
Jerry Ziemke ◽  
Natalya Kramarova ◽  
Dave Haffner ◽  
Pawan Bhartia

<p>The NASA TOMS V9 (TOMS-V9) total ozone retrieval algorithm is tested<br>for sensitvity to boundary-layer ozone and suitability to make daily<br>maps of tropospheric ozone residual (TOR).  Daily maps of TOR are<br>derived by differencing co-located MERRA-2 assimilated MLS<br>stratospheric column ozone (SCO) from total column ozone from the Aura<br>Ozone Monitoring Instrument (OMI).  The TOMS-V9 algorithm uses a few<br>discrete channels with an order of magnitude range in ozone<br>senstivity. We compare the TOR results from TOMS-V9 with results from<br>several hyper-spectral total ozone retrievals: GODFIT v4 (BIRA-IASB),<br>OMI-DOAS (KNMI), and total ozone from the SAO PROFOZ algorithm. We<br>compare all satellite-retrieved TOR with TOR derived from ozonesondes,<br>lidar, and the Goddard Modeling Initiative (GMI) model simulation.</p><p> </p><p> </p>


2013 ◽  
Vol 6 (4) ◽  
pp. 7811-7865 ◽  
Author(s):  
F. Ebojie ◽  
C. von Savigny ◽  
A. Ladstätter-Weißenmayer ◽  
A. Rozanov ◽  
M. Weber ◽  
...  

Abstract. Tropospheric ozone, O3, has two sources: transport from the stratosphere and photochemical production in the troposphere. It plays important roles in atmospheric chemistry and climate change. In this manuscript we describe the retrieval of tropospheric O3 columns from limb-nadir matching (LNM) observations of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument, which flies as part of the payload onboard the European Space Agency (ESA) satellite Envisat. This retrieval technique is a residual approach that utilizes the subtraction of the stratospheric O3 columns, derived from the limb observations, from the total O3 columns, derived from the nadir observations. The technique requires accurate knowledge of the stratospheric O3 columns, the total O3 columns, tropopause height, and their associated errors. The stratospheric O3 columns were determined from the stratospheric O3 profile retrieved in the Hartley and Chappius bands, based on SCIAMACHY limb scattering measurements. The total O3 columns were also derived from SCIAMACHY measurements, in the nadir viewing mode using the Weighting Function Differential Optical Absorption Spectroscopy (WFDOAS) technique in the Huggins band. Comparisons of the tropospheric O3 columns from SCIAMACHY and collocated measurements from ozonesondes, in both hemispheres between January 2003 and December 2011 show agreement to within 2–5 DU (1 DU = 2.69 × 1016 molecules cm−2). Comparison of tropospheric O3 from SCIAMACHY with the results from ozonesondes, the Tropospheric Emission Spectrometer (TES), and the LNM method combining Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) data (hereinafter referred to as OMI/MLS), have been investigated. We find that all four retrieved data sets show agreement within the error bars and exhibit strong seasonal variation, which differs in amplitude. The spatial distribution of tropospheric ozone observed shows pollution plumes related to the release of precursors at the different seasons in both hemispheres.


2010 ◽  
Vol 10 (19) ◽  
pp. 9681-9688 ◽  
Author(s):  
Q. Tang ◽  
M. J. Prather

Abstract. The geographic and temporal variations in tropospheric and stratospheric ozone columns from individual swath measurements of the Ozone Monitoring Instrument (OMI), on the NASA Aura spacecraft, are reasonably well simulated by the University of California, Irvine (UCI) chemistry transport model (CTM) using 1°×1°×40-layer meteorological fields for the year 2005. From the CTM we find that high-frequency spatial variations in tropospheric column ozone (TCO), including around the jet streams, are not generally correlated with variations in stratospheric ozone column, but instead are collocated with folding events involving stratospheric-origin, high-ozone layers below the tropopause. The CTM fold events are verified in many cases with available ozone sondes. Using the OMI Level 2 profiles, and defining tropopause height from our CTM using the European Centre for Medium-Range Weather Forecasts (ECMWF) fields, we find that most of the variations in TCO near CTM folding events are also not correlated with those in stratospheric ozone column. A large fraction of the OMI TCO variance is accurately simulated by the CTM where the variance is significant, especially along the subtropical jets. The absolute tropospheric columns from OMI and CTM agree swath-by-swath, pixel-by-pixel within ±5 Dobson Units (DU) for most cases. Notable exceptions are in the tropics where neither the high ozone from biomass burning nor the low ozone in the convergence zones over the Pacific is found in the OMI observations, because of OMI's insensitivity to the lower troposphere. Another difference is identified with the OMI profiles near the southern subtropical jet. The CTM has a high bias in stratospheric column outside the tropics, due to problems previously identified with the stratospheric circulation in the 40-layer meteorological fields. Overall, we identify ozone folds with short-lived features in TCO that have scales of a few hundred kilometres as observed by OMI.


2010 ◽  
Vol 10 (6) ◽  
pp. 14875-14896
Author(s):  
Q. Tang ◽  
M. J. Prather

Abstract. The geographic and temporal variations in tropospheric and stratospheric ozone columns from individual swath measurements of the Ozone Monitoring Instrument (OMI) on the NASA Aura spacecraft are reasonably well simulated by the University of California, Irvine (UCI) chemistry transport model (CTM) using 1°×1°×40-layer meteorological fields for year 2005. From the CTM we find that high-frequency spatial variations in tropospheric column ozone (TCO), including around the jet streams, are not generally correlated with variations in stratospheric ozone column, but instead are collocated with folding events involving stratospheric-origin, high-ozone layers below the tropopause. The CTM fold events are verified in many cases with available ozone sondes. Using the OMI Level 2 profiles, and defining tropopause height from our CTM using the European Centre for Medium-Range Weather Forecasts (ECMWF) fields, we find that most of the variations in TCO near CTM folding events are also not correlated with those in stratospheric ozone column. The absolute tropospheric columns from OMI and CTM agree swath-by-swath, pixel-by-pixel within ±5 Dobson Units (DU) for most cases. Notable exceptions are in the tropics where neither the high ozone from biomass burning nor the low ozone in the convergence zones over the Pacific is found in the OMI observations, likely because of OMI's insensitivity to the lower troposphere. A separate bias is identified with the OMI profiles near the southern sub-tropical jet. The CTM has a high bias in stratospheric column outside the tropics, due to problems previously identified with the stratospheric circulation in the 40-layer meteorological fields. Overall, we identify ozone folds with short-lived features in TCO that have scales of a few hundred kilometers as observed by OMI.


2013 ◽  
Vol 6 (2) ◽  
pp. 239-249 ◽  
Author(s):  
J. Bak ◽  
J. H. Kim ◽  
X. Liu ◽  
K. Chance ◽  
J. Kim

Abstract. South Korea is planning to launch the GEMS (Geostationary Environment Monitoring Spectrometer) instrument into the GeoKOMPSAT (Geostationary Korea Multi-Purpose SATellite) platform in 2018 to monitor tropospheric air pollutants on an hourly basis over East Asia. GEMS will measure backscattered UV radiances covering the 300–500 nm wavelength range with a spectral resolution of 0.6 nm. The main objective of this study is to evaluate ozone profiles and stratospheric column ozone amounts retrieved from simulated GEMS measurements. Ozone Monitoring Instrument (OMI) Level 1B radiances, which have the spectral range 270–500 nm at spectral resolution of 0.42–0.63 nm, are used to simulate the GEMS radiances. An optimal estimation-based ozone profile algorithm is used to retrieve ozone profiles from simulated GEMS radiances. Firstly, we compare the retrieval characteristics (including averaging kernels, degrees of freedom for signal, and retrieval error) derived from the 270–330 nm (OMI) and 300–330 nm (GEMS) wavelength ranges. This comparison shows that the effect of not using measurements below 300 nm on retrieval characteristics in the troposphere is insignificant. However, the stratospheric ozone information in terms of DFS decreases greatly from OMI to GEMS, by a factor of ∼2. The number of the independent pieces of information available from GEMS measurements is estimated to 3 on average in the stratosphere, with associated retrieval errors of ~1% in stratospheric column ozone. The difference between OMI and GEMS retrieval characteristics is apparent for retrieving ozone layers above ~20 km, with a reduction in the sensitivity and an increase in the retrieval errors for GEMS. We further investigate whether GEMS can resolve the stratospheric ozone variation observed from high vertical resolution Earth Observing System (EOS) Microwave Limb Sounder (MLS). The differences in stratospheric ozone profiles between GEMS and MLS are comparable to those between OMI and MLS below ~3 hPa (~40 km), except with slightly larger biases and larger standard deviations by up to 5%. At pressure altitudes above ~3 hPa, GEMS retrievals show strong influence of a priori and large differences with MLS, which, however, can be sufficiently improved by using better a priori information. The GEMS-MLS differences show negative biases of less than 4% for stratospheric column ozone, with standard deviations of 1–3%, while OMI retrievals show similar agreements with MLS except for 1% smaller biases at middle and high latitudes. Based on the comparisons, we conclude that GEMS will measure tropospheric ozone and stratospheric ozone columns with accuracy comparable to that of OMI and ozone profiles with slightly worse performance than that of OMI below ~3 hPa.


2008 ◽  
Vol 136 (11-12) ◽  
pp. 640-643 ◽  
Author(s):  
Milorad Letic

INTRODUCTION UV Index is an indicator of human exposure to solar ultraviolet (UV) rays. The numerical values of the UV Index range from 1-11 and above. There are three levels of protection against UV radiation; low values of the UV Index - protection is not required, medium values of the UV Index - protection is recommended and high values of the UV Index - protection is obligatory. The value of the UV Index primarily depends on the elevation of the sun and total ozone column. OBJECTIVE The aim of the study is to determine the intervals of possible maximal annual values of the UV Index in Serbia in order to determine the necessary level of protection in a simple manner. METHOD For maximal and minimal expected values of total column ozone and for maximal elevation of the sun, the value of the UV Index was determined for each month in the Northern and Southern parts of Serbia. These values were compared with the forecast of the UV Index. RESULTS Maximal clear sky values of the UV Index in Serbia for altitudes up to 500m in May, June, July and August can be 9 or even 10, and not less than 5 or 6. During November, December, January and February the UV Index can be 4 at most. During March, April, September and October the expected values of the UV Index are maximally 7 and not less than 3. The forecast of the UV Index is within these limits in 98% of comparisons. CONCLUSION The described method of determination of possible UV Index values showed a high agreement with forecasts. The obtained results can be used for general recommendations in the protection against UV radiation.


2010 ◽  
Vol 10 (24) ◽  
pp. 12273-12283 ◽  
Author(s):  
J. Kar ◽  
M. N. Deeter ◽  
J. Fishman ◽  
Z. Liu ◽  
A. Omar ◽  
...  

Abstract. A large wintertime increase in pollutants has been observed over the eastern parts of the Indo Gangetic Plains. We use improved version 4 carbon monoxide (CO) retrievals from the Measurements of Pollution in the Troposphere (MOPITT) along with latest version 3 aerosol data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar instrument and the tropospheric ozone residual products to characterize this pollution pool. The feature is seen primarily in the lower troposphere from about November to February with strong concomitant increases in CO and aerosol optical depth (AOD). The signature of the feature is also observed in tropospheric ozone column data. The height resolved aerosol data from CALIPSO confirm the trapping of the pollution pool at the lowest altitudes. The observations indicate that MOPITT can capture this low altitude phenomenon even in winter conditions as indicated by the averaging kernels.


2018 ◽  
Vol 11 (6) ◽  
pp. 3595-3610 ◽  
Author(s):  
Anna Vaskuri ◽  
Petri Kärhä ◽  
Luca Egli ◽  
Julian Gröbner ◽  
Erkki Ikonen

Abstract. We demonstrate the use of a Monte Carlo model to estimate the uncertainties in total ozone column (TOC) derived from ground-based direct solar spectral irradiance measurements. The model estimates the effects of possible systematic spectral deviations in the solar irradiance spectra on the uncertainties in retrieved TOC. The model is tested with spectral data measured with three different spectroradiometers at an intercomparison campaign of the research project “Traceability for atmospheric total column ozone” at Izaña, Tenerife on 17 September 2016. The TOC values derived at local noon have expanded uncertainties of 1.3 % (3.6 DU) for a high-end scanning spectroradiometer, 1.5 % (4.4 DU) for a high-end array spectroradiometer, and 4.7 % (13.3 DU) for a roughly adopted instrument based on commercially available components and an array spectroradiometer when correlations are taken into account. When neglecting the effects of systematic spectral deviations, the uncertainties reduce by a factor of 3. The TOC results of all devices have good agreement with each other, within the uncertainties, and with the reference values of the order of 282 DU during the analysed day, measured with Brewer spectrophotometer #183.


Sign in / Sign up

Export Citation Format

Share Document