scholarly journals Air–snow transfer of nitrate on the East Antarctic Plateau – Part 2: An isotopic model for the interpretation of deep ice-core records

2015 ◽  
Vol 15 (20) ◽  
pp. 12079-12113 ◽  
Author(s):  
J. Erbland ◽  
J. Savarino ◽  
S. Morin ◽  
J. L. France ◽  
M. M. Frey ◽  
...  

Abstract. Unraveling the modern budget of reactive nitrogen on the Antarctic Plateau is critical for the interpretation of ice-core records of nitrate. This requires accounting for nitrate recycling processes occurring in near-surface snow and the overlying atmospheric boundary layer. Not only concentration measurements but also isotopic ratios of nitrogen and oxygen in nitrate provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modeling is required to test hypotheses in a quantitative manner. Here we introduce the model TRANSITS (TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow), a novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air–snow interface on the East Antarctic Plateau, in terms of concentrations (mass fraction) and nitrogen (δ15N) and oxygen isotopic composition (17O excess, Δ17O) in nitrate. At the air–snow interface at Dome C (DC; 75° 06' S, 123° 19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow, including the observed extraordinary high positive values (around +300 ‰) below 2 cm. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air–snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by several per mill. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2 as well as by our lack of understanding of the NOx chemistry at Dome C. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15ϵapp, 17Eapp) to the snow accumulation rate. Building on this development, we propose a framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions and δ15N in the nitrate archived in an ice core may be used to derive information about past variations in the total ozone column and/or the primary inputs of nitrate above Antarctica as well as in nitrate trapping efficiency (defined as the ratio between the archived nitrate flux and the primary nitrate input flux). The Δ17O of nitrate could then be corrected from the impact of cage recombination effects associated with the photolysis of nitrate in snow. Past changes in the relative contributions of the Δ17O in the primary inputs of nitrate and the Δ17O in the locally cycled NO2 and that inherited from the additional O atom in the oxidation of NO2 could then be determined. Therefore, information about the past variations in the local and long-range processes operating on reactive nitrogen species could be obtained from ice cores collected in low-accumulation regions such as the Antarctic Plateau.

2015 ◽  
Vol 15 (5) ◽  
pp. 6887-6966 ◽  
Author(s):  
J. Erbland ◽  
J. Savarino ◽  
S. Morin ◽  
J. L. France ◽  
M. M. Frey ◽  
...  

Abstract. Unraveling the modern budget of reactive nitrogen on the Antarctic plateau is critical for the interpretation of ice core records of nitrate. This requires accounting for nitrate recycling processes occurring in near surface snow and the overlying atmospheric boundary layer. Not only concentration measurements, but also isotopic ratios of nitrogen and oxygen in nitrate, provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modelling is required to test hypotheses in a~quantitative manner. Here we introduce the model "TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow" (TRANSITS), a~novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air–snow interface on the East Antarctic plateau, in terms of concentrations (mass fraction) and the nitrogen (δ15N) and oxygen isotopic composition (17O}-excess, Δ17O) in nitrate. At the air–snow interface at Dome C (DC, 75°06' S, 123°19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow including the observed extraordinary high positive values (around +300 ‰) below 20 \\unit{cm}. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air–snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by a~few~‰. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15ϵapp, 17Eapp) to the snow accumulation rate. Building on this development, we propose a~framework for the interpretation of nitrate records measured from ice cores. Measurement of nitrate mass fractions and δ15N in the nitrate archived in an ice core, may be used to derive information about past variations in the total ozone column and/or the primary inputs of nitrate above Antarctica as well as in nitrate trapping efficiency (defined as the ratio between the archived nitrate flux and the primary nitrate input flux). The Δ17O of nitrate could then be corrected from the impact of cage recombination effects associated with the photolysis of nitrate in snow. Past changes in the relative contributions of the Δ17O in the primary inputs of nitrate and the Δ17O in the locally cycled NO2 could then be determined. Therefore, information about the past variations in the local and long range processes operating on reactive nitrogen species could be obtained from ice cores collected in low accumulation regions such as the Antarctic plateau.


2017 ◽  
Author(s):  
Mathieu Casado ◽  
Amaelle Landais ◽  
Ghislain Picard ◽  
Thomas Münch ◽  
Thomas Laepple ◽  
...  

Abstract. The oldest ice core records are obtained from the East Antarctic plateau. Water isotopes records are key to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all the processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in Rayleigh distillation and isotope enabled climate models. However, a quantitative understanding of processes potentially altering the snow isotopic composition after the deposition is still missing. In low accumulation sites, such as those found in Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretation of isotopic composition. Here, we combine observations of isotopic composition in the vapour, the precipitation, the surface snow and the buried snow from Dome C, a deep ice core site on the East Antarctic Plateau. At the seasonal scale, we suggest a significant impact of metamorphism on surface snow isotopic signal compared to the initial precipitation signal. Particularly, in summer, exchanges of water molecules between vapour and snow are driven by the sublimation/condensation cycles at the diurnal scale. Using highly resolved isotopic composition profiles from pits in five Antarctic sites, we identify common patterns, despite different accumulation rates, which cannot be attributed to the seasonal variability of precipitation. Altogether, the difference in the signals observed in the precipitation, surface snow and buried snow isotopic composition constitute evidences of post-deposition processes affecting ice core records in low accumulation areas.


2018 ◽  
Vol 12 (5) ◽  
pp. 1745-1766 ◽  
Author(s):  
Mathieu Casado ◽  
Amaelle Landais ◽  
Ghislain Picard ◽  
Thomas Münch ◽  
Thomas Laepple ◽  
...  

Abstract. The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation–condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.


2016 ◽  
Author(s):  
Mathieu Casado ◽  
Amaelle Landais ◽  
Ghislain Picard ◽  
Thomas Münch ◽  
Thomas Laepple ◽  
...  

Abstract. The oldest ice core records are obtained from the East Antarctic plateau. Water stable isotopes records are key for reconstructions of past climatic conditions both over the ice sheet and at the evaporation source. The accuracy of such climate reconstructions crucially depends on the knowledge of all the processes affecting the water vapour, precipitation and snow isotopic composition. Atmospheric fractionation processes are well understood and can be integrated in Rayleigh distillation and complex isotope enabled climate models. However, a comprehensive quantitative understanding of processes potentially altering the snow isotopic composition after the deposition is still missing, especially for exchanges between vapour and snow. In low accumulation sites such as found on the East Antarctic Plateau, these poorly constrained processes are especially likely to play a significant role. This limits the interpretation of isotopic composition from ice core records, specifically at short time scales. Here, we combine observations of isotopic composition in the vapour, the precipitation, the surface snow and the buried snow from various sites of the East Antarctic Plateau. At the seasonal scale, we highlight a significant impact of metamorphism on surface snow isotopic signal compared to the initial precipitation isotopic signal. In particular, in summer, exchanges of water molecules between vapour and snow are driven by the sublimation/condensation cycles at the diurnal scale. Using highly resolved isotopic composition profiles from pits in five East Antarctic sites, we identify a common 20 cm cycle which cannot be attributed to the seasonal variability of precipitation. Altogether, the smaller range of isotopic compositions observed in the buried and in the surface snow compared to the precipitation, and also the reduced slope between surface snow isotopic composition and temperature compared to precipitation, constitute evidences of post-deposition processes affecting the variability of the isotopic composition in the snow pack. To reproduce these processes in snow-models is crucial to understand the link between snow isotopic composition and climatic conditions and to improve the interpretation of isotopic composition as a paleoclimate proxy.


2021 ◽  
Author(s):  
Imogen Gabriel ◽  
Gill Plunkett ◽  
Peter Abbott ◽  
Bergrún Óladóttir ◽  
Joseph McConnell ◽  
...  

<p>Volcanic eruptions are considered as one of the primary natural drivers for changes in the global climate system and understanding the impact of past eruptions on the climate is integral to adopt appropriate responses towards future volcanic eruptions.</p><p>The Greenland ice core records are dominated by Icelandic eruptions, with several volcanic systems (Katla, Hekla, Bárðarbunga-Veiðivötn and Grimsvötn) being highly active throughout the Holocene. A notable period of increased Icelandic volcanic activity occurred between 500-1250 AD and coincided with climatic changes in the North Atlantic region which may have facilitated the Viking settlement of Greenland and Iceland. However, a number of these volcanic events are poorly constrained (duration and magnitude). Consequently, the Greenland ice cores offer the opportunity to reliably reconstruct past Icelandic volcanism (duration, magnitude and frequency) due to their high-resolution, the proximity of Iceland to Greenland and subsequent increased likelihood of volcanic fallout deposits (tephra particles and sulphur aerosols) being preserved. However, both the high frequency of eruptions between 500-1250 AD and the geochemical similarity of Iceland’s volcanic centres present challenges in making the required robust geochemical correlations between the source volcano and the ice core records and ultimately reliably assessing the climatic-societal impacts of these eruptions.</p><p>To address this, we use two Greenland ice core records (TUNU2013 and B19) and undertake geochemical analysis on tephra from the volcanic events in the selected time window which have been detected and sampled using novel techniques (insoluble particle peaks and sulphur acidity peaks). Further geochemical analysis of proximal material enables robust correlations to be made between the events in the ice core records and their volcanic centres. The high-resolution of these polar archives provides a precise age for the event and when utilised alongside other proxies (i.e. sulphur aerosols), both the duration and magnitude of these eruptions can be constrained, and the climatic-societal impacts of these eruptions reliably assessed.</p>


2020 ◽  
Author(s):  
Maria Hörhold ◽  
Alexander Weinhart ◽  
Sepp Kipfstuhl ◽  
Johannes Freitag ◽  
Georgia Micha ◽  
...  

<p>The reconstruction of past temperatures based on ice core records relies on the quantitative but empirical relationship of stable water isotopes and annual mean temperature. However, its relation varies through space and time. On the East Antarctic Plateau, temperature reconstructions from ice cores are poorly constrained or even fail on decadal and smaller time scales. The observed discrepancy between annual mean temperature and isotopic composition partly relies on surface processes altering the signal after deposition but also, to a great deal, on spatially coherent processes prior to or during deposition. However, spatial coverage over larger areas on the East Antarctic Plateau is challenging. We here present in-situ measurements of the isotopic composition of surface snow with unprecedented statistical quality and coverage. 1m surface snow profiles were collected during an overland traverse between Kohnen station and Plateau Station, covering a 1200km long transect. We explore regional differences of the temperature-isotope relationship and discuss possible mechanisms affecting the isotopic composition in areas with accumulation rates lower than 60mmWEa^-1.</p>


2013 ◽  
Vol 9 (4) ◽  
pp. 1733-1748 ◽  
Author(s):  
D. Veres ◽  
L. Bazin ◽  
A. Landais ◽  
H. Toyé Mahamadou Kele ◽  
B. Lemieux-Dudon ◽  
...  

Abstract. The deep polar ice cores provide reference records commonly employed in global correlation of past climate events. However, temporal divergences reaching up to several thousand years (ka) exist between ice cores over the last climatic cycle. In this context, we are hereby introducing the Antarctic Ice Core Chronology 2012 (AICC2012), a new and coherent timescale developed for four Antarctic ice cores, namely Vostok, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML) and Talos Dome (TALDICE), alongside the Greenlandic NGRIP record. The AICC2012 timescale has been constructed using the Bayesian tool Datice (Lemieux-Dudon et al., 2010) that combines glaciological inputs and data constraints, including a wide range of relative and absolute gas and ice stratigraphic markers. We focus here on the last 120 ka, whereas the companion paper by Bazin et al. (2013) focuses on the interval 120–800 ka. Compared to previous timescales, AICC2012 presents an improved timing for the last glacial inception, respecting the glaciological constraints of all analyzed records. Moreover, with the addition of numerous new stratigraphic markers and improved calculation of the lock-in depth (LID) based on δ15N data employed as the Datice background scenario, the AICC2012 presents a slightly improved timing for the bipolar sequence of events over Marine Isotope Stage 3 associated with the seesaw mechanism, with maximum differences of about 600 yr with respect to the previous Datice-derived chronology of Lemieux-Dudon et al. (2010), hereafter denoted LD2010. Our improved scenario confirms the regional differences for the millennial scale variability over the last glacial period: while the EDC isotopic record (events of triangular shape) displays peaks roughly at the same time as the NGRIP abrupt isotopic increases, the EDML isotopic record (events characterized by broader peaks or even extended periods of high isotope values) reached the isotopic maximum several centuries before. It is expected that the future contribution of both other long ice core records and other types of chronological constraints to the Datice tool will lead to further refinements in the ice core chronologies beyond the AICC2012 chronology. For the time being however, we recommend that AICC2012 be used as the preferred chronology for the Vostok, EDC, EDML and TALDICE ice core records, both over the last glacial cycle (this study), and beyond (following Bazin et al., 2013). The ages for NGRIP in AICC2012 are virtually identical to those of GICC05 for the last 60.2 ka, whereas the ages beyond are independent of those in GICC05modelext (as in the construction of AICC2012, the GICC05modelext was included only via the background scenarios and not as age markers). As such, where issues of phasing between Antarctic records included in AICC2012 and NGRIP are involved, the NGRIP ages in AICC2012 should therefore be taken to avoid introducing false offsets. However for issues involving only Greenland ice cores, there is not yet a strong basis to recommend superseding GICC05modelext as the recommended age scale for Greenland ice cores.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrea Spolaor ◽  
François Burgay ◽  
Rafael P. Fernandez ◽  
Clara Turetta ◽  
Carlos A. Cuevas ◽  
...  

AbstractPolar stratospheric ozone has decreased since the 1970s due to anthropogenic emissions of chlorofluorocarbons and halons, resulting in the formation of an ozone hole over Antarctica. The effects of the ozone hole and the associated increase in incoming UV radiation on terrestrial and marine ecosystems are well established; however, the impact on geochemical cycles of ice photoactive elements, such as iodine, remains mostly unexplored. Here, we present the first iodine record from the inner Antarctic Plateau (Dome C) that covers approximately the last 212 years (1800-2012 CE). Our results show that the iodine concentration in ice remained constant during the pre-ozone hole period (1800-1974 CE) but has declined twofold since the onset of the ozone hole era (~1975 CE), closely tracking the total ozone evolution over Antarctica. Based on ice core observations, laboratory measurements and chemistry-climate model simulations, we propose that the iodine decrease since ~1975 is caused by enhanced iodine re-emission from snowpack due to the ozone hole-driven increase in UV radiation reaching the Antarctic Plateau. These findings suggest the potential for ice core iodine records from the inner Antarctic Plateau to be as an archive for past stratospheric ozone trends.


2015 ◽  
Vol 15 (13) ◽  
pp. 18963-19015
Author(s):  
M. C. Zatko ◽  
L. Geng ◽  
B. Alexander ◽  
E. D. Sofen ◽  
K. Klein

Abstract. The formation and recycling of reactive nitrogen (NO, NO2, HONO) at the air-snow interface has implications for air quality and the oxidation capacity of the atmosphere in snow-covered regions. Nitrate(NO3-) photolysis in snow provides a source of oxidants (e.g., hydroxyl radical, ozone) and oxidant precursors (e.g., nitrogen oxides) to the overlying boundary layer, and disturbs the preservation of NO3- in ice cores. We have incorporated the photolysis of Antarctic snow NO3- into a global chemical transport model (GEOS-Chem) to examine the implications of snow NO3- photolysis for boundary layer chemistry, the recycling and redistribution of reactive nitrogen across the Antarctic continent, and the preservation of ice-core NO3- in Antarctic ice cores. The calculated potential flux of snow-sourced NOx in Antarctica (0.5–7.8 × 108 molec cm-2 s-1) and calculated e-folding depths of UV actinic flux in snowpack (24–69 cm) are comparable to observations. Snow-sourced NOx increases mean austral summer boundary layer mixing ratios of total nitrate (HNO3 + NO3-), NOx, OH, and O3 in Antarctica by a factor of up to 32, 38, 7, and 2, respectively, in the model. Model results also suggest that NO3- can be recycled between the air and snow multiple times and that NO3- can remain in the snow photic zone for at least 7.5 years on the East Antarctic plateau. The fraction of photolysis-driven loss of NO3- from the snow is ∼ 0.99 on the East Antarctic plateau, while areas of wind convergence (e.g., over the Ronne Ice Shelf) have a net gain of NO3- due to redistribution of snow-sourced reactive nitrogen across the Antarctic continent. The modeled enrichment in ice-core δ 15N(NO3-) due to photolysis-driven loss of snow NO3- ranges from 0 to 363 ‰ and the magnitudes of the spatial trends are consistent with δ 15N(NO3-) observations, suggesting that the spatial variability in snow δ 15N(NO3-) across the Antarctic continent is determined mainly by the degree of photolysis-driven loss of snow NO3-. Further, there is a strong relationship between the degree of photolysis-driven loss of snow NO3- and the degree of nitrogen recycling between the air and snow, suggesting that ice-core δ 15N(NO3-) observations can be used to assess the degree of nitrogen recycling and loss over much of Antarctica and aid in the interpretation of ice-core NO3- in terms of past atmospheric variability of reactive nitrogen.


2005 ◽  
Vol 41 ◽  
pp. 63-70 ◽  
Author(s):  
David P. Schneider ◽  
Eric J. Steig ◽  
Tas Van Ommen

AbstractIce-core records are a key resource for reconstructing Antarctic climate. However, a number of physical processes preclude the simple interpretation of ice-core properties such as oxygen isotopic ratios in terms of climate variables like temperature or sea-level pressure. We show that well-dated, sub-annually resolved stable-isotopic records from the United States International Trans-Antarctic Scientific Expedition (US-ITASE) traverses and other sources have a high correlation with local seasonal temperature variation. However, this temporal relationship cannot be simply extended to quantitative interannual resolution reconstructions of site temperature. We suggest that a consistent and important target for ice-core calibrations is a composite of annual mean temperature records from Antarctic weather stations, which covaries strongly with the dominant mode (from principal component analysis) of temperature variability in the Antarctic. Significant correlations with this temperature index are found with individual ice-core records, with a composite of the ice cores, and through a multiple linear regression model with the ice cores as predictors. These results imply that isotopic signals, like the instrumental temperature mode itself, have a strong response to large-scale atmospheric circulation variability, which in the Antarctic region is dominated by the Southern Annular Mode.


Sign in / Sign up

Export Citation Format

Share Document