scholarly journals Disk and circumsolar radiances in the presence of ice clouds

2017 ◽  
Vol 17 (11) ◽  
pp. 6865-6882 ◽  
Author(s):  
Päivi Haapanala ◽  
Petri Räisänen ◽  
Greg M. McFarquhar ◽  
Jussi Tiira ◽  
Andreas Macke ◽  
...  

Abstract. The impact of ice clouds on solar disk and circumsolar radiances is investigated using a Monte Carlo radiative transfer model. The monochromatic direct and diffuse radiances are simulated at angles of 0 to 8° from the center of the sun. Input data for the model are derived from measurements conducted during the 2010 Small Particles in Cirrus (SPARTICUS) campaign together with state-of-the-art databases of optical properties of ice crystals and aerosols. For selected cases, the simulated radiances are compared with ground-based radiance measurements obtained by the Sun and Aureole Measurements (SAM) instrument. First, the sensitivity of the radiances to the ice cloud properties and aerosol optical thickness is addressed. The angular dependence of the disk and circumsolar radiances is found to be most sensitive to assumptions about ice crystal roughness (or, more generally, non-ideal features of ice crystals) and size distribution, with ice crystal habit playing a somewhat smaller role. Second, in comparisons with SAM data, the ice cloud optical thickness is adjusted for each case so that the simulated radiances agree closely (i.e., within 3 %) with the measured disk radiances. Circumsolar radiances at angles larger than ≈ 3° are systematically underestimated when assuming smooth ice crystals, whereas the agreement with the measurements is better when rough ice crystals are assumed. Our results suggest that it may well be possible to infer the particle roughness directly from ground-based SAM measurements. In addition, the results show the necessity of correcting the ground-based measurements of direct radiation for the presence of diffuse radiation in the instrument's field of view, in particular in the presence of ice clouds.

2016 ◽  
Author(s):  
Päivi Haapanala ◽  
Petri Räisänen ◽  
Greg M. McFarquhar ◽  
Jussi Tiira ◽  
Andreas Macke ◽  
...  

Abstract. The impact of ice clouds on solar-disk and circumsolar radiances is investigated using a Monte Carlo radiative transfer model. The monochromatic direct and diffuse radiances are simulated at angles of 0° to 8° from the center of the Sun. Input data for the model are derived from measurements conducted during the 2010 Small Particles in Cirrus campaign together with state-of-the-art databases of optical properties of ice crystals and aerosols. For selected cases, the simulated radiances are compared with ground-based radiance measurements with the Sun and Aureole Measurement (SAM) instrument. First, the sensitivity of the radiances to the ice cloud properties and aerosol optical thickness was addressed. The angular dependence of the disk and circumsolar radiances was found to be most sensitive to assumptions about ice crystal roughness (or, more generally, non-ideal features of ice crystals) and size distribution, with ice crystal habit playing a somewhat smaller role. Second, in the comparisons with SAM data, the ice-cloud optical thickness was adjusted for each case so that the simulated radiances agreed closely (i.e., within 3 %) with the measured disk radiances. Circumsolar radiances at angles larger than ≈ 3° were systematically underestimated when assuming smooth ice crystals, but the agreement with the measurements was better when rough ice crystals were assumed. Our results suggest that it may well be possible to infer the particle roughness (or more generally, non-ideality) directly from ground-based SAM measurements. In addition, the results show the necessity of correcting the ground-based measurements of direct radiation for the presence of diffuse radiation in the instrument's field of view, in particular in the presence of ice clouds.


2009 ◽  
Vol 2 (2) ◽  
pp. 653-678 ◽  
Author(s):  
T. Sonkaew ◽  
V. V. Rozanov ◽  
C. von Savigny ◽  
A. Rozanov ◽  
H. Bovensmann ◽  
...  

Abstract. Clouds in the atmosphere play an important role in reflection, absorption and transmission of solar radiation and thus affect trace gas retrievals. The main goal of this paper is to examine the sensitivity of stratospheric and lower mesospheric ozone retrievals from limb-scattered radiance measurements to clouds using the SCIATRAN radiative transfer model and retrieval package. The retrieval approach employed is optimal estimation, and the considered clouds are vertically and horizontally homogeneous. Assuming an aerosol-free atmosphere and Mie phase functions for cloud particles, we compute the relative error of ozone profile retrievals in a cloudy atmosphere if clouds are neglected in the retrieval. To access altitudes from the lower stratosphere up to the lower mesosphere, we combine the retrievals in the Chappuis and Hartley ozone absorption bands. We find significant cloud sensitivity of the limb ozone retrievals in the Chappuis bands at lower stratospheric altitudes. The relative error in the retrieved ozone concentrations gradually decreases with increasing altitude and becomes negligible above approximately 40 km. The parameters with the largest impact on the ozone retrievals are cloud optical thickness, ground albedo and solar zenith angle. Clouds with different geometrical thicknesses or different cloud altitudes have a similar impact on the ozone retrievals for a given cloud optical thickness value, if the clouds are outside the field of view of the instrument. The effective radius of water droplets has a small influence on the error, i.e., less than 0.5% at altitudes above the cloud top height. Furthermore, the impact of clouds on the ozone profile retrievals was found to have a rather small dependence on the solar azimuth angle (less than 1% for all possible azimuth angles). For the most frequent cloud types, the total error is below 6% above 15 km altitude, if clouds are completely neglected in the retrieval. Neglecting clouds in the ozone profile retrievals generally leads to a low bias for a low ground albedo and to a high bias for a high ground albedo, assuming that the ground albedo is well known.


2013 ◽  
Vol 52 (1) ◽  
pp. 186-196 ◽  
Author(s):  
Benjamin H. Cole ◽  
Ping Yang ◽  
Bryan A. Baum ◽  
Jerome Riedi ◽  
Laurent C.-Labonnote ◽  
...  

AbstractInsufficient knowledge of the habit distribution and the degree of surface roughness of ice crystals within ice clouds is a source of uncertainty in the forward light scattering and radiative transfer simulations of ice clouds used in downstream applications. The Moderate Resolution Imaging Spectroradiometer (MODIS) collection-5 ice microphysical model presumes a mixture of various ice crystal shapes with smooth facets, except for the compact aggregate of columns for which a severely rough condition is assumed. When compared with Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) polarized reflection data, simulations of polarized reflectance using smooth particles show a poor fit to the measurements, whereas very rough-faceted particles provide an improved fit to the polarized reflectance. In this study a new microphysical model based on a mixture of nine different ice crystal habits with severely roughened facets is developed. Simulated polarized reflectance using the new ice habit distribution is calculated using a vector adding–doubling radiative transfer model, and the simulations closely agree with the polarized reflectance observed by PARASOL. The new general habit mixture is also tested using a spherical albedo differences analysis, and surface roughening is found to improve the consistency of multiangular observations. These results are consistent with previous studies that have used polarized reflection data. It is suggested that an ice model incorporating an ensemble of different habits with severely roughened surfaces would potentially be an adequate choice for global ice cloud retrievals.


2020 ◽  
Author(s):  
Huan Yu ◽  
Arve Kylling ◽  
Claudia Emde ◽  
Bernhard Mayer ◽  
Kerstin Stebel ◽  
...  

<p>Operational retrievals of tropospheric trace gases from space-borne spectrometers are made using 1D radiative transfer models. To minimize cloud effects generally only partially cloudy pixels are analysed using simplified cloud contamination treatments based on radiometric cloud fraction estimates and photon path length corrections based on oxygen collision pair (O<sub>2</sub>-O<sub>2</sub>) or O<sub>2</sub>A-absorption band measurements. In reality, however, the impact of clouds can be much more complex, involving scattering of clouds in neighbouring pixels and cloud shadow effects. Therefore, to go one step further, other correction methods may be envisaged that use sub-pixel cloud information from co-located imagers. Such methods require an understanding of the impact of clouds on the real 3D radiative transfer. We quantify this impact using the MYSTIC 3D radiative transfer model. The generation of realistic 3D input cloud fields, needed by MYSTIC (or any other 3D radiative transfer model), is non-trivial. We use cloud data generated by the ICOsahedral Non-hydrostatic (ICON) atmosphere model for a region including Germany, the Netherlands and parts of other surrounding countries. The model simulates realistic liquid and ice clouds with a horizontal spatial resolution of 156 m and it has been validated against ground-based and satellite-based observational data.</p><p>As a trace gas example, we study NO<sub>2</sub>, a key tropospheric trace gas measured by the atmospheric Sentinels. The MYSTIC 3D model simulates visible spectra, which are ingested in standard DOAS retrieval algorithms to retrieve the NO<sub>2</sub> column amount. Spectra are simulated for a number of realistic cloud scenarios, snow free surface albedos, and solar and satellite geometries typical of low-earth and geostationary orbits. The retrieved NO<sub>2</sub> vertical column densities (VCD) are compared with the true values to identify conditions where 3D cloud effects lead to significant biases on the NO<sub>2</sub> VCDs. A variety of possible mitigation strategies for such pixels are then explored.</p>


2017 ◽  
Vol 56 (2) ◽  
pp. 433-453 ◽  
Author(s):  
Oliver Schlenczek ◽  
Jacob P. Fugal ◽  
Gary Lloyd ◽  
Keith N. Bower ◽  
Thomas W. Choularton ◽  
...  

AbstractDuring the Cloud and Aerosol Characterization Experiment (CLACE) 2013 field campaign at the High Altitude Research Station Jungfraujoch, Switzerland, optically thin pure ice clouds and ice crystal precipitation were measured using holographic and other in situ particle instruments. For cloud particles, particle images, positions in space, concentrations, and size distributions were obtained, allowing one to extract size distributions classified by ice crystal habit. Small ice crystals occurring under conditions with a vertically thin cloud layer above and a stratocumulus layer approximately 1 km below exhibit similar properties in size and crystal habits as Antarctic/Arctic diamond dust. Also, ice crystal precipitation stemming from midlevel clouds subsequent to the diamond dust event was observed with a larger fraction of ice crystal aggregates when compared with the diamond dust. In another event, particle size distributions could be derived from mostly irregular ice crystals and aggregates, which likely originated from surface processes. These particles show a high spatial and temporal variability, and it is noted that size and habit distributions have only a weak dependence on the particle number concentration. Larger ice crystal aggregates and rosette shapes of some hundred microns in maximum dimension could be sampled as a precipitating cirrostratus cloud passed the site. The individual size distributions for each habit agree well with lognormal distributions. Fitted parameters to the size distributions are presented along with the area-derived ice water content, and the size distributions are compared with other measurements of pure ice clouds made in the Arctic and Antarctic.


2013 ◽  
Vol 52 (4) ◽  
pp. 872-888 ◽  
Author(s):  
Shouguo Ding ◽  
Ping Yang ◽  
Bryan A. Baum ◽  
Andrew Heidinger ◽  
Thomas Greenwald

AbstractThis paper describes the development of an ice cloud radiance simulator for the anticipated Geostationary Operational Environmental Satellite R (GOES-R) Advanced Baseline Imager (ABI) solar channels. The simulator is based on the discrete ordinates radiative transfer (DISORT) model. A set of correlated k-distribution (CKD) models is developed for the ABI solar channels to account for atmospheric trace gas absorption. The CKD models are based on the ABI spectral response functions and also consider when multiple gases have overlapping absorption. The related errors of the transmittance profile are estimated on the basis of the exact line-by-line results, and it is found that errors in transmittance are less than 0.2% for all but one of the ABI solar channels. The exception is for the 1.378-μm channel, centered near a strong water vapor absorption band, for which the errors are less than 2%. For ice clouds, the band-averaged bulk-scattering properties for each ABI [and corresponding Moderate Resolution Imaging Spectroradiometer (MODIS)] solar channel are derived using an updated single-scattering property database of both smooth and severely roughened ice particles, which include droxtals, hexagonal plates, hexagonal hollow and solid columns, three-dimensional hollow and solid bullet rosettes, and several types of aggregates. The comparison shows close agreement between the radiance simulator and the benchmark model, the line-by-line radiative transfer model (LBLRTM)+DISORT model. The radiances of the ABI and corresponding MODIS measurements are compared. The results show that the radiance differences between the ABI and MODIS channels under ice cloud conditions are likely due to the different band-averaged imaginary indices of refraction.


2014 ◽  
Vol 7 (11) ◽  
pp. 11303-11343 ◽  
Author(s):  
A. Kylling ◽  
N. Kristiansen ◽  
A. Stohl ◽  
R. Buras-Schnell ◽  
C. Emde ◽  
...  

Abstract. Volcanic ash is commonly observed by infrared detectors on board Earth orbiting satellites. In the presence of ice and/or liquid water clouds the detected volcanic ash signature may be altered. In this paper the effect of ice and liquid water clouds on detection and retrieval of volcanic ash is quantified by simulating synthetic equivalents to satellite infrared images with a 3-D radiative transfer model. The simulations were made both with and without realistic water and ice clouds taken from European Centre for Medium-Range Weather Forecast (ECMWF) analysis data. The volcanic ash cloud fields were taken from simulations by the Lagrangian particle dispersion model FLEXPART. The radiative transfer calculations were made for the geometry and channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI), for the full duration of the Eyjafjallajökull 2010 and Grímsvötn 2011 eruptions. The synthetic SEVIRI images were then used as input to standard reverse absorption ash detection and retrieval methods. Meteorological clouds were on average found to reduce the number of detected ash affected pixels by 6–12%. However, the effect was highly variable and for individual scenes up to 40% of pixels with mass loading > 0.2 g m−2 could not be detected due to the presence of water and ice clouds. The detection efficiency (detected ash pixels relative to Flexpart ash pixels with ash loading > 0.2 g m−2) was on average only 14.6% (22.1%) for the cloudy (cloudless) simulation for the Eyjafjallajökull 2010 eruption, and 3.6% (10.0%) for the Grímsvötn 2011 eruption. If only Flexpart ash pixels with ash loading > 1.0 g m−2 are considered the detection efficiency increase to 54.7% (74.7) for the Eyjafjallajökull 2010 eruption and to 4.8% (15.1%) for the Grímsvötn 2011 eruption. For coincident pixels, i.e., pixels where ash was both present in the Flexpart simulation and detected by the algorithm, the presence of meteorological clouds overall increased the retrieved mean mass loading for the Eyjafjallajökull 2010 eruption by about 13%, while for the Grímsvötn 2011 eruption ash mass loadings the effect was a 4% decrease of the retrieved ash mass loading. However, larger differences were seen between scenes (SD of ±30 and ±20% for Eyjafjallajökull and Grímsvötn respectively) and even larger ones within scenes. If all pixels are included the total mass from all scenes is severely underestimated. For the Eyjafjallajökull 2010 eruption the cloudless (cloudy) mass is underestimateed by 52% (66%) compared to the Flexpart mass, while for the Grímsvötn 2011 eruption the Flexpart mass is underestimated by 82% (91%) for the cloudless (cloudy) simulation. The impact of ice and liquid water clouds on the detection and retrieval of volcanic ash, implies that to fully appreciate the location and amount of ash, satellite ash measurements should be combined with ash dispersion modelling.


2013 ◽  
Vol 70 (9) ◽  
pp. 2794-2807 ◽  
Author(s):  
Bingqi Yi ◽  
Ping Yang ◽  
Bryan A. Baum ◽  
Tristan L'Ecuyer ◽  
Lazaros Oreopoulos ◽  
...  

Abstract Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu–Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m−2 over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1–2 W m−2. The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.


2013 ◽  
Vol 70 (1) ◽  
pp. 330-347 ◽  
Author(s):  
Ping Yang ◽  
Lei Bi ◽  
Bryan A. Baum ◽  
Kuo-Nan Liou ◽  
George W. Kattawar ◽  
...  

Abstract A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 μm. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10 000 μm in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P11, P12, P22, P33, P43, and P44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.


2011 ◽  
Vol 50 (11) ◽  
pp. 2283-2297 ◽  
Author(s):  
Chenxi Wang ◽  
Ping Yang ◽  
Bryan A. Baum ◽  
Steven Platnick ◽  
Andrew K. Heidinger ◽  
...  

AbstractA computationally efficient radiative transfer model (RTM) is developed for the inference of ice cloud optical thickness and effective particle size from satellite-based infrared (IR) measurements and is aimed at potential use in operational cloud-property retrievals from multispectral satellite imagery. The RTM employs precomputed lookup tables to simulate the top-of-the-atmosphere (TOA) radiances (or brightness temperatures) at 8.5-, 11-, and 12-μm bands. For the clear-sky atmosphere, the optical thickness of each atmospheric layer resulting from gaseous absorption is derived from the correlated-k-distribution method. The cloud reflectance, transmittance, emissivity, and effective temperature are precomputed using the Discrete Ordinate Radiative Transfer model (DISORT). For an atmosphere containing a semitransparent ice cloud layer with a visible optical thickness τ smaller than 5, the TOA brightness temperature differences (BTDs) between the fast model and the more rigorous DISORT results are less than 0.1 K, whereas the BTDs are less than 0.01 K if τ is larger than 10. With the proposed RTM, the cloud optical and microphysical properties are retrieved from collocated observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) in conjunction with the Modern Era Retrospective-Analysis for Research and Applications (MERRA) data. Comparisons between the retrieved ice cloud properties (optical thickness and effective particle size) based on the present IR fast model and those from the Aqua/MODIS operational collection-5 cloud products indicate that the IR retrievals are smaller. A comparison between the IR-retrieved ice water path (IWP) and CALIOP-retrieved IWP shows robust agreement over most of the IWP range.


Sign in / Sign up

Export Citation Format

Share Document