scholarly journals Aerosol water parameterization: long-term evaluation and importance for climate studies

2018 ◽  
Vol 18 (22) ◽  
pp. 16747-16774 ◽  
Author(s):  
Swen Metzger ◽  
Mohamed Abdelkader ◽  
Benedikt Steil ◽  
Klaus Klingmüller

Abstract. We scrutinize the importance of aerosol water for the aerosol optical depth (AOD) calculations using a long-term evaluation of the EQuilibrium Simplified Aerosol Model v4 for climate modeling. EQSAM4clim is based on a single solute coefficient approach that efficiently parameterizes hygroscopic growth, accounting for aerosol water uptake from the deliquescence relative humidity up to supersaturation. EQSAM4clim extends the single solute coefficient approach to treat water uptake of multicomponent mixtures. The gas–aerosol partitioning and the mixed-solution water uptake can be solved analytically, preventing the need for iterations, which is computationally efficient. EQSAM4clim has been implemented in the global chemistry climate model EMAC and compared to ISORROPIA II on climate timescales. Our global modeling results show that (I) our EMAC results of the AOD are comparable to modeling results that have been independently evaluated for the period 2000–2010, (II) the results of various aerosol properties of EQSAM4clim and ISORROPIA II are similar and in agreement with AERONET and EMEP observations for the period 2000–2013, and (III) the underlying assumptions on the aerosol water uptake limitations are important for derived AOD calculations. Sensitivity studies of different levels of chemical aging and associated water uptake show larger effects on AOD calculations for the year 2005 compared to the differences associated with the application of the two gas–liquid–solid partitioning schemes. Overall, our study demonstrates the importance of aerosol water for climate studies.

2018 ◽  
Author(s):  
Swen Metzger ◽  
Mohamed Abdelkader ◽  
Benedikt Steil ◽  
Klaus Klingmüller

Abstract. We scrutinize the importance of aerosol water for the aerosol optical depth (AOD) calculations by a long-term evaluation of the EQuilibrium Simplified Aerosol Model V4 for climate modeling, which was introduced by Metzger et al. (2016a). EQSAM4clim is based on a sin-gle solute coefficient approach that efficiently parameterizes hygroscopic growth, account- ing for aerosol water uptake from the deliquescence relative humidity up to supersaturation. EQSAM4clim extends the single solute coefficient approach to treat water uptake of multi- component mixtures. The gas-aerosol partitioning and the mixed solution water uptake can be solved analytically, preventing the need for iterations, which is computationally efficient. EQSAM4clim has been implemented in the global chemistry climate model EMAC and com- pared to ISORROPIA II (Fountoukis and Nenes, 2007) at climate time-scales. Our global modeling results show that (I) our EMAC results of the aerosol optical depth (AOD) are comparable to independent results of Pozzer et al. (2015) for the period 2000–2010, (II) the results of various aerosol properties of EQSAM4clim and ISORROPIA II are similar and in agreement with AERONET and EMEP observations for the period 2000–2013, and (III) that the underlying assumptions on the aerosol water uptake limitations are important for derived AOD calculations. Sensitivity studies of different levels of chemical aging and associated water uptake show larger effects on AOD calculations for the year 2005 compared to the differences associated with the application of the two gas-liquid-solid partitioning schemes. Altogether, our study reveals the importance of the aerosol water for climate applications.


2016 ◽  
Vol 16 (11) ◽  
pp. 7213-7237 ◽  
Author(s):  
Swen Metzger ◽  
Benedikt Steil ◽  
Mohamed Abdelkader ◽  
Klaus Klingmüller ◽  
Li Xu ◽  
...  

Abstract. We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas–liquid–solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry–climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas–liquid–solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.


2015 ◽  
Vol 15 (22) ◽  
pp. 33493-33553
Author(s):  
S. Metzger ◽  
B. Steil ◽  
M. Abdelkader ◽  
K. Klingmüller ◽  
L. Xu ◽  
...  

Abstract. We introduce a framework to efficiently parameterize the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute specific coefficient was introduced in Metzger et al. (2012) to accurately parameterize the single solution hygroscopic growth, considering the Kelvin effect – accounting for the water uptake of concentrated nanometer sized particles up to dilute solutions, i.e., from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler-theory). Here we extend the νi-parameterization from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II, ISORROPIA II models as well as textbook examples. We apply our parameterization in EQSAM4clim, the EQuilibrium Simplified Aerosol Model V4 for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show: (i) that the νi-approach enables to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that, e.g., pure ammonium nitrate and mixed ammonium nitrate – ammonium sulfate mixtures can be solved with a simple method, and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.


2011 ◽  
Vol 4 (4) ◽  
pp. 2791-2847 ◽  
Author(s):  
S. Metzger ◽  
B. Steil ◽  
L. Xu ◽  
J. E. Penner ◽  
J. Lelieveld

Abstract. We introduce version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), which is part of our aerosol chemistry-microphysics module (GMXe) and chemistry-climate model (EMAC). We focus on the relative humidity of deliquescence (RHD) based water uptake of atmospheric aerosols, as this is important for atmospheric chemistry and climate modeling, e.g. to calculate the aerosol optical depth (AOD). Since the main EQSAM4 applications will involve large-scale, long-term and high-resolution atmospheric chemistry-climate modeling with EMAC, computational efficiency is an important requirement. EQSAM4 parameterizes the composition and water uptake of multicomponent atmospheric aerosols by considering the gas-liquid-solid partitioning of single and mixed solutes. EQSAM4 builds on analytical, and hence CPU efficient, aerosol hygroscopic growth parameterizations to compute the aerosol liquid water content (AWC). The parameterizations are described in the companion paper (Metzger et al., 2011) and only require a compound specific coefficient νi to derive the single solute molality and the AWC for the whole range of water activity (aw). νi is pre-calculated and applied during runtime by using internal look-up tables. Here, the EQSAM4 equilibrium model is described and compared to the more explicit thermodynamic model ISORROPIA II. Both models are imbedded in EMAC/GMXe. Box model inter-comparisons, including the reference model E-AIM, and global simulations with EMAC show that gas-particle partitioning, including semi-volatiles and water, is in good agreement. A more comprehensive box model inter-comparison of EQSAM4 with EQUISOLV II is subject of the revised publication of Xu et al. (2009), i.e. Xu et al. (2011).


2013 ◽  
Vol 13 (20) ◽  
pp. 10385-10396 ◽  
Author(s):  
G. S. Stuart ◽  
R. G. Stevens ◽  
A.-I. Partanen ◽  
A. K. L. Jenkins ◽  
H. Korhonen ◽  
...  

Abstract. The intentional enhancement of cloud albedo via controlled sea-spray injection from ships (marine cloud brightening) has been proposed as a possible method to control anthropogenic global warming; however, there remains significant uncertainty in the efficacy of this method due to, amongst other factors, uncertainties in aerosol and cloud microphysics. A major assumption used in recent cloud- and climate-modeling studies is that all sea spray was emitted uniformly into some oceanic grid boxes, and thus these studies did not account for subgrid aerosol coagulation within the sea-spray plumes. We explore the evolution of these sea-salt plumes using a multi-shelled Gaussian plume model with size-resolved aerosol coagulation. We determine how the final number of particles depends on meteorological conditions, including wind speed and boundary-layer stability, as well as the emission rate and size distribution of aerosol emitted. Under previously proposed injection rates and typical marine conditions, we find that the number of aerosol particles is reduced by over 50%, but this reduction varies from under 10% to over 90% depending on the conditions. We provide a computationally efficient parameterization for cloud-resolving and global-scale models to account for subgrid-scale coagulation, and we implement this parameterization in a global-scale aerosol-climate model. While designed to address subgrid-scale coagulation of sea-salt particles, the parameterization is generally applicable for coagulation of subgrid-scale aerosol from point sources. We find that accounting for this subgrid-scale coagulation reduces cloud droplet number concentrations by 46% over emission regions, and reduces the global mean radiative flux perturbation from −1.5 W m−2 to −0.8 W m−2.


2013 ◽  
Vol 13 (21) ◽  
pp. 10609-10631 ◽  
Author(s):  
P. Zieger ◽  
R. Fierz-Schmidhauser ◽  
E. Weingartner ◽  
U. Baltensperger

Abstract. The effect of aerosol water uptake on the aerosol particle light scattering coefficient (σsp) is described in this study by comparing measurements from five European sites: the Jungfraujoch, located in the Swiss Alps at 3580 m a.s.l.; Ny-Ålesund, located on Spitsbergen in the Arctic; Mace Head, a coastal site in Ireland; Cabauw, a rural site in the Netherlands; and Melpitz, a regional background site in Eastern Germany. These sites were selected according to the aerosol type usually encountered at that location. The scattering enhancement factor f(RH, λ) is the key parameter to describe the effect of water uptake on the particle light scattering. It is defined as the σsp(RH) at a certain relative humidity (RH) and wavelength λ divided by its dry value. f(RH) at the five sites varied widely, starting at very low values of f(RH = 85%, λ = 550 nm) around 1.28 for mineral dust, and reaching up to 3.41 for Arctic aerosol. Hysteresis behavior was observed at all sites except at the Jungfraujoch (due to the absence of sea salt). Closure studies and Mie simulations showed that both size and chemical composition determine the magnitude of f(RH). Both parameters are also needed to successfully predict f(RH). Finally, the measurement results were compared to the widely used aerosol model, OPAC (Hess et al., 1998). Significant discrepancies were seen, especially at intermediate RH ranges; these were mainly attributed to inappropriate implementation of hygroscopic growth in the OPAC model. Replacement of the hygroscopic growth with values from the recent literature resulted in a clear improvement of the OPAC model.


2013 ◽  
Vol 13 (4) ◽  
pp. 8939-8984 ◽  
Author(s):  
P. Zieger ◽  
R. Fierz-Schmidhauser ◽  
E. Weingartner ◽  
U. Baltensperger

Abstract. The effect of aerosol water uptake on the aerosol particle light scattering coefficient (σsp) is described in this study by comparing measurements from five European sites: the Jungfraujoch, located in the Swiss Alps at 3580 m a.s.l., Ny-Ålesund, located on Spitsbergen in the Arctic, Mace Head, a coastal site in Ireland, Cabauw, a rural site in the Netherlands and Melpitz, a regional background site in Eastern Germany. These sites were selected according to the aerosol type usually encountered at that location. The scattering enhancement factor f(RH,λ) is the key parameter to describe the effect of water uptake on the particle light scattering. It is defined as the σsp(RH) at a certain relative humidity (RH) and wavelength λ divided by its dry value. f(RH) largely varied at the five sites starting from very low values of f(RH = 85%,λ = 550 nm) around 1.28 for mineral dust to 3.41 for Arctic aerosol. Hysteresis behavior was observed at all sites except at the Jungfraujoch due to the absence of sea salt. Closure studies and Mie simulations showed that both size and chemical composition determine the magnitude of f(RH). Both parameters are also needed to successfully predict f(RH). Finally, the measurement results were compared to the widely used aerosol model OPAC (Hess et al., 1998). Significant discrepancies were seen especially at intermediate RH ranges, which were mainly attributed to inappropriate implemented hygroscopic growth within OPAC. Replacement of the hygroscopic growth with recent literature values showed a clear improvement of the OPAC model.


2011 ◽  
Vol 11 (9) ◽  
pp. 24813-24855 ◽  
Author(s):  
S. Metzger ◽  
B. Steil ◽  
L. Xu ◽  
J. E. Penner ◽  
J. Lelieveld

Abstract. Water is a main component of atmospheric aerosols and its amount depends on the particle chemical composition. We introduce a new parameterization for the aerosol hygroscopic growth factor (HGF), based on an empirical relation between water activity (aw) and solute molality (μs) through a single solute specific coefficient νi. Three main advantages are: (1) wide applicability, (2) simplicity and (3) analytical nature. (1) Our approach considers the Kelvin effect and covers ideal solutions at large relative humidity (RH), including CCN activation, as well as concentrated solutions with high ionic strength at low RH such as the relative humidity of deliquescence (RHD). (2) A single νi coefficient suffices to parameterize the HGF for a wide range of particle sizes, from nanometer nucleation mode to micrometer coarse mode particles. (3) In contrast to previous methods, our analytical aw parameterization depends not only on a linear correction factor for the solute molality, instead νi also appears in the exponent in form x · ax. According to our findings, νi can be assumed constant for the entire aw range (0–1). Thus, the νi based method is computationally efficient. In this work we focus on single solute solutions, where νi is pre-determined with the bisection method from our analytical equations using RHD measurements and the saturation molality μssat. The computed aerosol HGF and supersaturation (Köhler-theory) compare well with the results of the thermodynamic reference model E-AIM for the key compounds NaCl and (NH4)2SO4 relevant for CCN modeling and calibration studies. The equations introduced here provide the basis of our revised gas-liquid-solid partitioning model, i.e. version 4 of the EQuilibrium Simplified Aerosol Model (EQSAM4), described in a companion paper.


2013 ◽  
Vol 13 (7) ◽  
pp. 18679-18711 ◽  
Author(s):  
G. S. Stuart ◽  
R. G. Stevens ◽  
A.-I. Partanen ◽  
A. K. L. Jenkins ◽  
H. Korhonen ◽  
...  

Abstract. The intentional enhancement of cloud albedo via controlled sea-spray injection from ships (Marine Cloud Brightening) has been proposed as a possible method to control anthropogenic global warming; however, there remains significant uncertainty in the efficacy of this method due to, amongst other factors, uncertainties in aerosol and cloud microphysics. A major assumption used in recent cloud- and climate-modeling studies is that all sea spray was emitted uniformly into some oceanic grid boxes, and thus these studies did not account for sub-grid aerosol coagulation within the sea-spray plumes. We explore the evolution of these sea-salt plumes using a multi-shelled Gaussian plume model with size-resolved aerosol coagulation. We determine how the final number of particles depends on meteorological conditions, including wind speed and boundary-layer stability, as well as the emission rate and size distribution of aerosol emitted. Under previously proposed injection rates and typical marine conditions, we find that the number of aerosol particles is reduced by over 50%, but this reduction varies from under 10% to over 90% depending on the conditions. We provide a computationally efficient parameterization for cloud-resolving and global-scale models to account for sub-grid scale coagulation, and we implement this parameterization in a global-scale aerosol-climate model. We find that accounting for this sub-grid scale coagulation reduces cloud droplet number concentrations by 46% over emission regions, and reduces the global mean radiative flux perturbation from −1.5 W m-2 to −0.8 W m-2.


2013 ◽  
Vol 52 (1) ◽  
pp. 47-63 ◽  
Author(s):  
Daran L. Rife ◽  
Emilie Vanvyve ◽  
James O. Pinto ◽  
Andrew J. Monaghan ◽  
Christopher A. Davis ◽  
...  

AbstractThis paper describes a new computationally efficient and statistically robust sampling method for generating dynamically downscaled climatologies. It is based on a Monte Carlo method coupled with stratified sampling. A small yet representative set of “case days” is selected with guidance from a large-scale reanalysis. When downscaled, the sample closely approximates the long-term meteorological record at a location, in terms of the probability density function. The method is demonstrated for the creation of wind maps to help determine the suitability of potential sites for wind energy farms. Turbine hub-height measurements at five U.S. and European tall tower sites are used as a proxy for regional climate model (RCM) downscaled winds to validate the technique. The tower-measured winds provide an independent test of the technique, since RCM-based downscaled winds exhibit an inherent dependence upon the large-scale reanalysis fields from which the case days are sampled; these same reanalysis fields would provide the boundary conditions to the RCM. The new sampling method is compared with the current approach widely used within the wind energy industry for creating wind resource maps, which is to randomly select 365 case days for downscaling, with each day in the calendar year being represented. The new method provides a more accurate and repeatable estimate of the long-term record of winds at each tower location. Additionally, the new method can closely approximate the accuracy of the current (365 day) industry approach using only a 180-day sample, which may render climate downscaling more tractable for those with limited computing resources.


Sign in / Sign up

Export Citation Format

Share Document