scholarly journals The global climatology of the intensity of the ionospheric sporadic <i>E</i> layer

2019 ◽  
Vol 19 (6) ◽  
pp. 4139-4151 ◽  
Author(s):  
Bingkun Yu ◽  
Xianghui Xue ◽  
Xin'an Yue ◽  
Chengyun Yang ◽  
Chao Yu ◽  
...  

Abstract. On the basis of S4max data retrieved from COSMIC GPS radio occultation measurements, the long-term climatology of the intensity of Es layers is investigated for the period from December 2006 to January 2014. Global maps of Es intensity show the high-spatial-resolution geographical distribution and strong seasonal dependence of Es layers. The maximum intensity of Es occurs over the mid-latitudes, and its value in summer is 2–3 times larger than that in winter. A relatively strong Es layer is observed at the North Pole and South Pole, with a distinct boundary dividing the mid-latitudes and high latitudes along the 60–80∘ geomagnetic latitude band. The simulation results show that the convergence of vertical ion velocity could partially explain the seasonal dependence of Es intensity. Furthermore, some disagreements between the distributions of the calculated divergence of vertical ion velocity and the observed Es intensity indicate that other processes, such as the vertical motions of gravity waves, magnetic-field effects, meteoric mass influx into Earth's atmosphere, and the chemical processes of metallic ions, should also be considered as they may also play an important role in the spatial and seasonal variations in Es layers.

2018 ◽  
Author(s):  
Bingkun Yu ◽  
Xianghui Xue ◽  
Xin'an Yue ◽  
Xiankang Dou

Abstract. On the basis of S4max data retrieved from COSMIC GPS radio occultation measurements, the long-term climatology of the intensity of Es layers is investigated for the period from December 2006 to January 2014. The global maps of Es intensity shows a high spatial resolution geographical distributions and strong seasonal dependence of Es layers. The maximum intensity of Es occurs in the midlatitudes, and its value in summer is 2–3 times larger than that in winter. A relatively strong Es layer is observed at the North and South Poles with a distinct boundary dividing the midddle latitudes and high latitudes along 60°–80° geomagnetic latitude bands. Besides, simulation results shows that the convergence of vertical ion velocity could partially explain the seasonal dependence of Es intensity. Furthermore, some disagreements between the distributions of calculated divergence of vertical ion velocity and observed Es intensity indicate that other processes such as magnetic field effects, meteoric mass influx into the earth's atmosphere and chemical processes of metallic ions should also be considered, which play an important role in the spatial and seasonal variations of Es layers.


2020 ◽  
Vol 20 (11) ◽  
pp. 7035-7047 ◽  
Author(s):  
Monika E. Szeląg ◽  
Viktoria F. Sofieva ◽  
Doug Degenstein ◽  
Chris Roth ◽  
Sean Davis ◽  
...  

Abstract. In this work, we analyze the seasonal dependence of ozone trends in the stratosphere using four long-term merged data sets, SAGE-CCI-OMPS, SAGE-OSIRIS-OMPS, GOZCARDS, and SWOOSH, which provide more than 30 years of monthly zonal mean ozone profiles in the stratosphere. We focus here on trends between 2000 and 2018. All data sets show similar results, although some discrepancies are observed. In the upper stratosphere, the trends are positive throughout all seasons and the majority of latitudes. The largest upper-stratospheric ozone trends are observed during local winter (up to 6 % per decade) and equinox (up to 3 % per decade) at mid-latitudes. In the equatorial region, we find a very strong seasonal dependence of ozone trends at all altitudes: the trends vary from positive to negative, with the sign of transition depending on altitude and season. The trends are negative in the upper-stratospheric winter (−1 % per decade to −2 % per decade) and in the lower-stratospheric spring (−2 % per decade to −4 % per decade), but positive (2 % per decade to 3 % per decade) at 30–35 km in spring, while the opposite pattern is observed in summer. The tropical trends below 25 km are negative and maximize during summer (up to −2 % per decade) and spring (up to −3 % per decade). In the lower mid-latitude stratosphere, our analysis points to a hemispheric asymmetry: during local summers and equinoxes, positive trends are observed in the south (+1 % per decade to +2 % per decade), while negative trends are observed in the north (−1 % per decade to −2 % per decade). We compare the seasonal dependence of ozone trends with available analyses of the seasonal dependence of stratospheric temperature trends. We find that ozone and temperature trends show positive correlation in the dynamically controlled lower stratosphere and negative correlation above 30 km, where photochemistry dominates. Seasonal trend analysis gives information beyond that contained in annual mean trends, which can be helpful in order to better understand the role of dynamical variability in short-term trends and future ozone recovery predictions.


2020 ◽  
Author(s):  
Monika E. Szeląg ◽  
Viktoria F. Sofieva ◽  
Doug Degenstein ◽  
Chris Roth ◽  
Sean Davis ◽  
...  

Abstract. In this work, we analyse the seasonal dependence of ozone trends in the stratosphere using four long-term merged datasets: SAGE-CCI-OMPS, SAGE-OSIRIS-OMPS, GOZCARDS and SWOOSH which provide more than 30 years of monthly zonal mean ozone profiles in the stratosphere. We focus here on trends between 2000 and 2018. All datasets show similar results, although some discrepancies are observed. In the upper stratosphere, the trends are positive throughout all seasons and the majority of latitudes. The largest upper stratospheric ozone trends are observed during local winter (up to 6 % dec−1) and equinox (up to 3 % dec−1) at mid-latitudes. In the equatorial region, we find a very strong seasonal dependence of ozone trends at all altitudes: the trends vary from positive to negative, with the sign of transition depending on altitude and season. The trends are negative in the upper stratospheric winter (−1 to −2 % dec−1) and in the lower stratospheric spring (−2 to −4 % dec−1), but positive (2–3 % dec−1) at 30–35 km in spring, while the opposite pattern is observed in summer. The tropical trends below 25 km are negative and maximize during summer (up to −2 % dec−1) and spring (up to −3 % dec−1). In the lower mid-latitude stratosphere, our analysis indicates hemispheric asymmetry: during local summers and equinoxes, positive trends are observed in the South (+1 to +2 % dec−1) while negative trends are observed in the North (−1 to −2 % dec−1). We compare the seasonal dependence of ozone trends with available analyses of the seasonal dependence of stratospheric temperature trends. We find that ozone and temperature trends show positive correlation in the dynamically controlled lower stratosphere, and negative correlation above 30 km, where photochemistry dominates. Seasonal trend analysis gives information beyond that contained in annual mean trends, which can be helpful in order to better understand the role of dynamical variability in short-term trends and future ozone recovery predictions.


2000 ◽  
Vol 179 ◽  
pp. 201-204
Author(s):  
Vojtech Rušin ◽  
Milan Minarovjech ◽  
Milan Rybanský

AbstractLong-term cyclic variations in the distribution of prominences and intensities of green (530.3 nm) and red (637.4 nm) coronal emission lines over solar cycles 18–23 are presented. Polar prominence branches will reach the poles at different epochs in cycle 23: the north branch at the beginning in 2002 and the south branch a year later (2003), respectively. The local maxima of intensities in the green line show both poleward- and equatorward-migrating branches. The poleward branches will reach the poles around cycle maxima like prominences, while the equatorward branches show a duration of 18 years and will end in cycle minima (2007). The red corona shows mostly equatorward branches. The possibility that these branches begin to develop at high latitudes in the preceding cycles cannot be excluded.


Author(s):  
Federico Varese

Organized crime is spreading like a global virus as mobs take advantage of open borders to establish local franchises at will. That at least is the fear, inspired by stories of Russian mobsters in New York, Chinese triads in London, and Italian mafias throughout the West. As this book explains, the truth is more complicated. The author has spent years researching mafia groups in Italy, Russia, the United States, and China, and argues that mafiosi often find themselves abroad against their will, rather than through a strategic plan to colonize new territories. Once there, they do not always succeed in establishing themselves. The book spells out the conditions that lead to their long-term success, namely sudden market expansion that is neither exploited by local rivals nor blocked by authorities. Ultimately the inability of the state to govern economic transformations gives mafias their opportunity. In a series of matched comparisons, the book charts the attempts of the Calabrese 'Ndrangheta to move to the north of Italy, and shows how the Sicilian mafia expanded to early twentieth-century New York, but failed around the same time to find a niche in Argentina. The book explains why the Russian mafia failed to penetrate Rome but succeeded in Hungary. A pioneering chapter on China examines the challenges that triads from Taiwan and Hong Kong find in branching out to the mainland. This book is both a compelling read and a sober assessment of the risks posed by globalization and immigration for the spread of mafias.


Author(s):  
Tatiana Vasilievna Pomogaeva ◽  
Aliya Ahmetovna Aseinova ◽  
Yuriy Aleksandrovich Paritskiy ◽  
Vjacheslav Petrovich Razinkov

The article presents annual statistical data of the Caspian Research Institute of Fishery. There has been kept track of the long term dynamics of the stocks of three species of Caspian sprat (anchovy, big-eyed kilka, sprat) and investigated a process of substituting a food item of sprats Eurytemora grimmi to a small-celled copepod species Acartia tonsa Dana. According to the research results, there has been determined growth potential of stocks of each species. Ctenophoran-Mnemiopsis has an adverse effect on sprat population by eating fish eggs and larvae. Ctenophoram - Mnemiopsis is a nutritional competitor to the full-grown fishes. The article gives recommendations on reclamation of stocks of the most perspective species - common sprat, whose biological characteristics helped not to suffer during Ctenophoram outburst and to increase its population during change of the main food item. Hydroacoustic survey data prove the intensive growth of common sprat biomass in the north-west part of the Middle Caspian. According to the results of the research it may be concluded that to realize the volumes of recommended sprat catch it is necessary to organize the marine fishery of common sprat at the Russian Middle Caspian shelf.


2018 ◽  
pp. 149-154

Vera Antonovna Martynenko (17.02.1936–06.01.2018) — famous specialist in the field of studying vascular plant flora and vegetation of the Far North, the Honored worker of the Komi Republic (2006), The Komi Republic State Scientific Award winner (2000). She was born in the town Likhoslavl of the Kali­nin (Tver) region. In 1959, Vera Antonovna graduated from the faculty of soil and biology of the Leningrad State University and then moved to the Komi Branch of USSR Academy of Science (Syktyvkar). From 1969 to 1973 she passed correspondence postgraduate courses of the Komi Branch of USSR Academy of ­Science. In 1974, she received the degree of candidate of biology (PhD) by the theme «Comparative analysis of the boreal flora at the Northeast European USSR» in the Botanical Institute (St. Petersburg). In 1996, Vera Antonovna received the degree of doctor of biology in the Institute of plant and animal ecology (Ekaterinburg) «Flora of the northern and mid subzones of the taiga of the European North-East». The study and conservation of species and coenotical diversity of the plant world, namely the vascular plants flora of the Komi Republic and revealing its transformation under the anthropogenic influence, was in the field of V. A. Martynenko’ scientific interests. She made great contribution to the study of the Komi Republic meadow flora and the pool of medi­cinal plants. She performed inventorying and mapping the meadows of several agricultural enterprises of the Republic, revealed the species composition and places for harvesting medicinal plants and studied their productivity in the natural flora of the boreal zone. The results of her long-term studies were used for making the NPA system and the Red Book of the Komi Republic (1998 and 2009). Vera Antonovna participated in the research of the influence of placer gold mining and oil development on the natural ecosystems of the North, and developed the method of long-term monitoring of plant cover. Results of these works are of high practical value. V. A. Martynenko is an author and coauthor of more than 130 scientific publications. The most important jnes are «Flora of Northeast European USSR» (1974, 1976, and 1977), «Floristic composition of fodder lands of the Northeast Europe» (1989), «The forests of the Komi Republic» (1999), «Forestry of forest resources of the Komi Republic» (2000), «The list of flora of the Yugyd va national park» (2003), «The guide for vascular plants of the Syktyvkar and its vicinities» (2005), «Vascular plants of the Komi Republic» (2008), and «Resources of the natural flora of the Komi Republic» (2014). She also was an author of «Encyclopedia of the Komi Republic» (1997, 1999, and 2000), «Historical and cultural atlas of the Komi Republic» (1997), «Atlas of the Komi Republic» (2001, 2011). V. A. Martynenko made a great contribution to the development of the botanical investigations in the North. Since 1982, during more than 10 years, she was the head of the Department of the Institute of Biology. Three Ph. D. theses have been completed under her leadership. Many years, she worked actively in the Dissertation Council of the Institute of biology Komi Scientific Centre UrB RAS.  The death of Vera Antonovna Martynenko is a heavy and irretrievable loss for the staff of the Institute of Biology. The memory of Vera Antonovna will live in her numerous scientific works, the hearts of students and colleagues.


2012 ◽  
Author(s):  
Vladimir Zakharov ◽  
Andrei Pushkarev
Keyword(s):  

Author(s):  
Robert H. Ellison

Prompted by the convulsions of the late eighteenth century and inspired by the expansion of evangelicalism across the North Atlantic world, Protestant Dissenters from the 1790s eagerly subscribed to a millennial vision of a world transformed through missionary activism and religious revival. Voluntary societies proliferated in the early nineteenth century to spread the gospel and transform society at home and overseas. In doing so, they engaged many thousands of converts who felt the call to share their experience of personal conversion with others. Though social respectability and business methods became a notable feature of Victorian Nonconformity, the religious populism of the earlier period did not disappear and religious revival remained a key component of Dissenting experience. The impact of this revitalization was mixed. On the one hand, growth was not sustained in the long term and, to some extent, involvement in interdenominational activity undermined denominational identity; on the other hand, Nonconformists gained a social and political prominence they had not enjoyed since the middle of the seventeenth century and their efforts laid the basis for the twentieth-century explosion of evangelicalism in Africa, Asia, and South America.


Sign in / Sign up

Export Citation Format

Share Document