scholarly journals A very high-resolution assessment and modelling of urban air quality

2020 ◽  
Vol 20 (2) ◽  
pp. 625-647 ◽  
Author(s):  
Tobias Wolf ◽  
Lasse H. Pettersson ◽  
Igor Esau

Abstract. Urban air quality is one of the most prominent environmental concerns for modern city residents and authorities. Accurate monitoring of air quality is difficult due to intrinsic urban landscape heterogeneity and superposition of multiple polluting sources. Existing approaches often do not provide the necessary spatial details and peak concentrations of pollutants, especially at larger distances from monitoring stations. A more advanced integrated approach is needed. This study presents a very high-resolution air quality assessment with the Parallelized Large-Eddy Simulation Model (PALM), capitalising on local measurements. This fully three-dimensional primitive-equation hydrodynamical model resolves both structural details of the complex urban surface and turbulent eddies larger than 10 m in size. We ran a set of 27 meteorological weather scenarios in order to assess the dispersion of pollutants in Bergen, a middle-sized Norwegian city embedded in a coastal valley. This set of scenarios represents typically observed weather conditions with high air pollution from nitrogen dioxide (NO2) and particulate matter (PM2.5). The modelling methodology helped to identify pathways and patterns of air pollution caused by the three main local air pollution sources in the city. These are road vehicle traffic, domestic house heating with wood-burning fireplaces and ships docked in the harbour area next to the city centre. The study produced vulnerability maps, highlighting the most impacted districts for each weather and emission scenario. Overall, the largest contribution to air pollution over inhabited areas in Bergen was caused by road traffic emissions for NO2 and wood-burning fireplaces for PM2.5 pollution. The effect of emission from ships in the port was mostly restricted to the areas close to the harbour and moderate in comparison. However, the results have contributed to implementation of measures to reduce emissions from ships in Bergen harbour, including provision of shore power.

2019 ◽  
Author(s):  
Tobias Wolf ◽  
Lasse H. Pettersson ◽  
Igor Esau

Abstract. Urban air quality is one of the most prominent environmental concerns for a modern city dweller. Accurate monitoring of air quality is difficult due to intrinsic urban landscape heterogeneity and superposition of multiple polluting sources. Existing approaches often do not provide the necessary spatial details and peak concentrations of pollutants, especially at larger distances from measuring stations. A more advanced approach is needed. This study presents a very high-resolution air quality assessment with the large-eddy simulation model PALM. This fully three-dimensional primitive-equation hydro-dynamical model resolves both structural details of the complex urban surface and turbulent eddies larger than 10 m in size. We ran a set of 9 meteorological scenarios in order to assess the dispersion of pollutants in Bergen, a middle-sized Norwegian city embedded in a coastal valley. This set of scenarios represents typically observed conditions with high air pollution from nitrogen dioxide (NO2) and particulate matter (PM2.5). The modelling methodology helped to identify pathways and patterns of air pollution caused by the three main local air pollution sources in the city. These are road vehicle traffic, domestic house heating with wood-burning fireplaces and ships docked in the harbour area next to the city centre. The study produced vulnerability maps, highlighting the most impacted districts for each scenario.


2020 ◽  
Author(s):  
Yanxu Zhang ◽  
Xingpei Ye ◽  
Shibao Wang ◽  
Xiaojing He ◽  
Lingyao Dong ◽  
...  

Abstract. Urban air pollution has tremendous spatial variability at scales ranged from kilometer to meters due to unevenly distributed emission sources, complex flow patterns, and photochemical reactions. However, high-resolution air quality information is not available through traditional approaches such as ground-based measurements and regional air quality models (with typical resolution >1 km). Here we develop a ten-meter resolution air quality model for traffic-related CO pollution based on the parallelized large-eddy simulation model (PALM). The model performance is evaluated with measurements obtained from sensors deployed on a taxi platform, which collects data with a comparable spatial resolution to our model. The very high resolution of the model reveals a detailed geographical dispersion pattern of air pollution in and out of the road network. The model results (0.92 ± 0.40 mg/m3) agree well with the measurements (0.90 ± 0.58 mg/m3, n = 114,502). The model has similar spatial patterns with that of the measurements, and the r2 value of a linear regression between model and measurement data is 0.50 ± 0.07 during non-rush hours with middle and low wind speeds. A non-linear relationship is found between average modeled concentrations and wind speed with higher concentrations under calm wind speeds. The modeled concentrations are also 20–30 % higher in streets that align with the wind direction within ~20°. We find that streets with higher buildings in the downwind have lower modeled concentrations at the pedestrian level, and similar effects are found for the variability in building heights (including gaps between buildings). The modeled concentrations also decay fast in the first ~50 m from the nearest highway and arterial road but change slower further away. This study demonstrates the potential of large eddy simulation in urban air quality modeling, which is a vigorous part of the smart city system and could inform urban planning and air quality management.


2021 ◽  
Vol 21 (4) ◽  
pp. 2917-2929
Author(s):  
Yanxu Zhang ◽  
Xingpei Ye ◽  
Shibao Wang ◽  
Xiaojing He ◽  
Lingyao Dong ◽  
...  

Abstract. Urban air pollution has tremendous spatial variability at scales ranging from kilometers to meters due to unevenly distributed emission sources, complex flow patterns, and photochemical reactions. However, high-resolution air quality information is not available through traditional approaches such as ground-based measurements and regional air quality models (with typical resolution > 1 km). Here we develop a 10 m resolution air quality model for traffic-related CO pollution based on the Parallelized Large-Eddy Simulation Model (PALM). The model performance is evaluated with measurements obtained from sensors deployed on a taxi platform, which collects data with a comparable spatial resolution to our model. The very high resolution of the model reveals a detailed geographical dispersion pattern of air pollution in and out of the road network. The model results (0.92 ± 0.40 mg m−3) agree well with the measurements (0.90 ± 0.58 mg m−3, n=114 502). The model has similar spatial patterns to those of the measurements, and the r2 value of a linear regression between model and measurement data is 0.50 ± 0.07 during non-rush hours with middle and low wind speeds. A non-linear relationship is found between average modeled concentrations and wind speed with higher concentrations under calm wind speeds. The modeled concentrations are also 20 %–30 % higher in streets that align with the wind direction within ∼ 20∘. We find that streets with higher buildings downwind have lower modeled concentrations at the pedestrian level, and similar effects are found for the variability in building heights (including gaps between buildings). The modeled concentrations also decay fast in the first ∼ 50 m from the nearest highway and arterial road but change slower further away. This study demonstrates the potential of large-eddy simulation in urban air quality modeling, which is a vigorous part of the smart city system and could inform urban planning and air quality management.


2020 ◽  
Vol 13 (8) ◽  
pp. 4601-4617
Author(s):  
Bas Mijling

Abstract. In many cities around the world people are exposed to elevated levels of air pollution. Often local air quality is not well known due to the sparseness of official monitoring networks or unrealistic assumptions being made in urban-air-quality models. Low-cost sensor technology, which has become available in recent years, has the potential to provide complementary information. Unfortunately, an integrated interpretation of urban air pollution based on different sources is not straightforward because of the localized nature of air pollution and the large uncertainties associated with measurements of low-cost sensors. This study presents a practical approach to producing high-spatiotemporal-resolution maps of urban air pollution capable of assimilating air quality data from heterogeneous data streams. It offers a two-step solution: (1) building a versatile air quality model, driven by an open-source atmospheric-dispersion model and emission proxies from open-data sources, and (2) a practical spatial-interpolation scheme, capable of assimilating observations with different accuracies. The methodology, called Retina, has been applied and evaluated for nitrogen dioxide (NO2) in Amsterdam, the Netherlands, during the summer of 2016. The assimilation of reference measurements results in hourly maps with a typical accuracy (defined as the ratio between the root mean square error and the mean of the observations) of 39 % within 2 km of an observation location and 53 % at larger distances. When low-cost measurements of the Urban AirQ campaign are included, the maps reveal more detailed concentration patterns in areas which are undersampled by the official network. It is shown that during the summer holiday period, NO2 concentrations drop about 10 %. The reduction is less in the historic city centre, while strongest reductions are found around the access ways to the tunnel connecting the northern and the southern part of the city, which was closed for maintenance. The changing concentration patterns indicate how traffic flow is redirected to other main roads. Overall, it is shown that Retina can be applied for an enhanced understanding of reference measurements and as a framework to integrate low-cost measurements next to reference measurements in order to get better localized information in urban areas.


Author(s):  
J. K. Hammond ◽  
R. Chen ◽  
V. Mallet

Abstract Urban air quality simulation is an important tool to understand the impacts of air pollution. However, the simulations are often computationally expensive, and require extensive data on pollutant sources. Data on road traffic pollution, often the predominant source, can be obtained through sparse measurements, or through simulation of traffic and emissions. Modeling chains combine the simulations of multiple models to provide the most accurate representation possible, however the need to solve multiple models for each simulation increases computational costs even more. In this paper we construct a meta-modeling chain for urban atmospheric pollution, from dynamic traffic modeling to air pollution modeling. Reduced basis methods (RBM) aim to compute a cheap and accurate approximation of a physical state using approximation spaces made of a suitable sample of solutions to the model. One of the keys of these techniques is the decomposition of the computational work into an expensive one-time offline stage and a low-cost parameter-dependent online stage. Traditional RBMs require modifying the assembly routines of the computational code, an intrusive procedure which may be impossible in cases of operational model codes. We propose a non-intrusive reduced order scheme, and study its application to a full chain of operational models. Reduced basis are constructed using principal component analysis (PCA), and the concentration fields are approximated as projections onto this reduced space. We use statistical emulation to approximate projection coefficients in a non-intrusive manner. We apply a multi-level meta-modeling technique to a chain using the dynamic traffic assignment model LADTA, the emissions database COPERT IV, and the urban dispersion-reaction air quality model SIRANE to a case study on the city of Clermont-Ferrand with over 45, 000 daily traffic observations, a 47, 000-link road network, a simulation domain covering $$180\,\text {km}^2$$ 180 km 2 . We assess the results using hourly NO$$_2$$ 2 concentration observations measured at stations in the agglomeration. Computational times are reduced from nearly 3 h per simulation to under 0.1 s, while maintaining accuracy comparable to the original models. The low cost of the meta-model chain and its non-intrusive character demonstrate the versatility of the method, and the utility for long-term or many-query air quality studies such as epidemiological inquiry or uncertainty quantification.


2021 ◽  
Vol 13 (2) ◽  
pp. 496
Author(s):  
Xiaojian Hu ◽  
Nuo Chen ◽  
Nan Wu ◽  
Bicheng Yin

The Shanghai government has outlined plans for the new vehicles used for the public transportation, rental, sanitation, postal, and intra-city freight to be completely powered by electricity by 2020. This paper analyzed the characteristics of vehicle emissions in Shanghai in the past five years. The potential reduction in road traffic related emissions due to the promotion and application of electric vehicle in Shanghai was evaluated. The potential reduction was quantified by vehicular emissions. The vehicular emissions inventories are calculated by the COPERT IV model under the different scenarios, of which the results indicate that promoting electric vehicles is the efficient measure to control all road traffic related emissions and improve urban air quality. The results also provided basis and support for making policies to promote and manage electric vehicles.


2019 ◽  
Author(s):  
Margarida Correia Marques ◽  
Marcia Silva de Oliveira ◽  
Fernando Glenadel Braga ◽  
Margarida L. R. Liberato

1997 ◽  
Vol 31 (10) ◽  
pp. 1497-1511 ◽  
Author(s):  
N. Moussiopoulos ◽  
P. Sahm ◽  
K. Karatzas ◽  
S. Papalexiou ◽  
A. Karagiannidis

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Thanh Cong Nguyen ◽  
Hang Dieu Nguyen ◽  
Hoa Thu Le ◽  
Shinji Kaneko

PurposeThis purpose of this paper is to understand residents’ choice of preferred measures and their willingness-to-pay (WTP) for the measures to improve the air quality of Hanoi city.Design/methodology/approachQuestionnaire surveys were conducted to collect the opinions of 212 household representatives living in Hanoi City. The survey tools were tested and adjusted through an online survey with 191 responses. Multivariate probit and linear regression models were used to identify determinants of respondents’ choices of measures and their WTP.FindingsRespondents expressed their strong preferences for three measures for air quality improvements, including: (1) increase of green spaces; (2) use of less polluting fuels; (3) expansion of public transportation. The mean WTP for the implementation of those measures was estimated at about 148,000–282,000 Vietnamese dong, equivalent to 0.09–0.16% of household income. The respondents’ choices appear to be consistent with their characteristics and needs, such as financial affordability, time on roads and their perceived impacts of air pollution. The WTP estimates increase with perception of air pollution impacts, time on roads, education and income; but are lower for older people.Originality/valueTo gain a better understanding of public opinions, we applied multivariate probit models to check whether respondents’ choices were consistent with their characteristics and perceptions. This appears to be the first attempt to test the validity of public opinions on choices of measures for improving urban air quality in Vietnam. Our WTP estimates also contribute to the database on the values of improved air quality in the developing world.


Sign in / Sign up

Export Citation Format

Share Document