scholarly journals The efficiency of secondary organic aerosol particles to act as ice nucleating particles at mixed-phase cloud conditions

2018 ◽  
Author(s):  
Wiebke Frey ◽  
Dawei Hu ◽  
James Dorsey ◽  
M. Rami Alfarra ◽  
Aki Pajunoja ◽  
...  

Abstract. Secondary Organic Aerosol (SOA) particles have been found to be efficient ice nucleating particles under the cold conditions of (tropical) upper tropospheric cirrus clouds. Whether they also are efficient at initiating freezing at slightly warmer conditions as found in mixed phase clouds remains undetermined. Here, we study the ice nucleating ability of photo-chemically produced SOA particles with the combination of the Manchester Aerosol and Ice Cloud Chambers. Three SOA systems were tested resembling biogenic/anthropogenic particles and particles of different phase state. After the aerosol particles were formed, they were transferred into the cloud chamber where subsequent quasi-adiabatic cloud evacuations were performed. Additionally, the ice forming abilities of ammonium sulfate and kaolinite were investigated as a reference to test the experimental setup. Clouds were formed in the temperature range of −20 °C to −28.6 °C. Only the reference experiment using dust particles showed evidence of ice nucleation. No ice particles were observed in any other experiment. Thus, we conclude that SOA particles produced under the conditions of the reported experiments are not efficient ice nucleating particles starting at liquid saturation under mixed-phase cloud conditions.

2018 ◽  
Vol 18 (13) ◽  
pp. 9393-9409
Author(s):  
Wiebke Frey ◽  
Dawei Hu ◽  
James Dorsey ◽  
M. Rami Alfarra ◽  
Aki Pajunoja ◽  
...  

Abstract. Secondary organic aerosol (SOA) particles have been found to be efficient ice-nucleating particles under the cold conditions of (tropical) upper-tropospheric cirrus clouds. Whether they also are efficient at initiating freezing under slightly warmer conditions as found in mixed-phase clouds remains undetermined. Here, we study the ice-nucleating ability of photochemically produced SOA particles with the combination of the Manchester Aerosol Chamber and Manchester Ice Cloud Chamber. Three SOA systems were tested resembling biogenic and anthropogenic particles as well as particles of different phase state. These are namely α-pinene, heptadecane, and 1,3,5-trimethylbenzene. After the aerosol particles were formed, they were transferred into the cloud chamber, where subsequent quasi-adiabatic cloud activation experiments were performed. Additionally, the ice-forming abilities of ammonium sulfate and kaolinite were investigated as a reference to test the experimental setup. Clouds were formed in the temperature range of −20 to −28.6 ∘C. Only the reference experiment using dust particles showed evidence of ice nucleation. No ice particles were observed in any other experiment. Thus, we conclude that SOA particles produced under the conditions of the reported experiments are not efficient ice-nucleating particles starting at liquid saturation under mixed-phase cloud conditions.


2014 ◽  
Vol 14 (21) ◽  
pp. 28845-28883
Author(s):  
N. S. Umo ◽  
B. J. Murray ◽  
M. T. Baeza-Romero ◽  
J. M. Jones ◽  
A. R. Lea-Langton ◽  
...  

Abstract. Ice nucleating particles can modify cloud properties with implications for climate and the hydrological cycle; hence, it is important to understand which aerosol particle types nucleate ice and how efficiently they do so. It has been shown that aerosol particles such as natural dusts, volcanic ash, bacteria and pollen can act as ice nucleating particles, but the ice nucleating ability of combustion ashes has not been studied. Combustion ashes are major by-products released during the combustion of solid fuels and a significant amount of these ashes are emitted into the atmosphere either during combustion or via aerosolization of bottom ashes. Here, we show that combustion ashes (coal fly ash, wood bottom ash, domestic bottom ash, and coal bottom ash) nucleate ice in the immersion mode at conditions relevant to mixed-phase clouds. Hence, combustion ashes could play an important role in primary ice formation in mixed-phase clouds, especially in clouds that are formed near the emission source of these aerosol particles. In order to quantitatively assess the impact of combustion ashes on mixed-phase clouds, we propose that the atmospheric abundance of combustion ashes should be quantified since up to now they have mostly been classified together with mineral dust particles. Also, in reporting ice residue compositions, a distinction should be made between natural mineral dusts and combustion ashes in order to quantify the contribution of combustion ashes to atmospheric ice nucleation.


2015 ◽  
Vol 15 (9) ◽  
pp. 5195-5210 ◽  
Author(s):  
N. S. Umo ◽  
B. J. Murray ◽  
M. T. Baeza-Romero ◽  
J. M. Jones ◽  
A. R. Lea-Langton ◽  
...  

Abstract. Ice-nucleating particles can modify cloud properties with implications for climate and the hydrological cycle; hence, it is important to understand which aerosol particle types nucleate ice and how efficiently they do so. It has been shown that aerosol particles such as natural dusts, volcanic ash, bacteria and pollen can act as ice-nucleating particles, but the ice-nucleating ability of combustion ashes has not been studied. Combustion ashes are major by-products released during the combustion of solid fuels and a significant amount of these ashes are emitted into the atmosphere either during combustion or via aerosolization of bottom ashes. Here, we show that combustion ashes (coal fly ash, wood bottom ash, domestic bottom ash, and coal bottom ash) nucleate ice in the immersion mode at conditions relevant to mixed-phase clouds. Hence, combustion ashes could play an important role in primary ice formation in mixed-phase clouds, especially in clouds that are formed near the emission source of these aerosol particles. In order to quantitatively assess the impact of combustion ashes on mixed-phase clouds, we propose that the atmospheric abundance of combustion ashes should be quantified since up to now they have mostly been classified together with mineral dust particles. Also, in reporting ice residue compositions, a distinction should be made between natural mineral dusts and combustion ashes in order to quantify the contribution of combustion ashes to atmospheric ice nucleation.


2010 ◽  
Vol 10 (2) ◽  
pp. 4027-4077 ◽  
Author(s):  
A. Wiacek ◽  
T. Peter ◽  
U. Lohmann

Abstract. This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Without explicitly modelling dust emission and deposition processes, dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Practically none of the simulated air parcels reached regions where homogeneous ice nucleation can take place (T≲−40 °C) along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through regions supersaturated with respect to ice but subsaturated with respect to water, where "warm" (T≳−40 °C) ice clouds may form prior to supercooled water or mixed-phase clouds. The importance of "warm" ice clouds and the general influence of dust in the mixed-phase cloud region are highly uncertain due to considerable scatter in recent laboratory data from ice nucleation experiments, which we briefly review in this work. For "classical" cirrus-forming temperatures, our results show that only mineral dust IN that underwent mixed-phase cloud-processing previously are likely to be relevant, and, therefore, we recommend further systematic studies of immersion mode ice nucleation on mineral dust suspended in atmospherically relevant coatings.


2019 ◽  
Vol 76 (11) ◽  
pp. 3655-3667
Author(s):  
Songmiao Fan ◽  
Paul Ginoux ◽  
Charles J. Seman ◽  
Levi G. Silvers ◽  
Ming Zhao

Abstract Mixed-phase clouds are frequently observed in the atmosphere. Here we present a parameterization for ice crystal concentration and ice nucleation rate based on parcel model simulations for mixed-phase stratocumulus clouds, as a complement to a previous parameterization for stratus clouds. The parcel model uses a singular (time independent) description for deposition nucleation and a time-dependent description for condensation nucleation and immersion freezing on mineral dust particles. The mineral dust and temperature-dependent parameterizations have been implemented in the Geophysical Fluid Dynamics Laboratory atmosphere model, version 4.0 (AM4.0) (new), while the standard AM4.0 (original) uses a temperature-dependent parameterization. Model simulations with the new and original AM4.0 show significant changes in cloud properties and radiative effects. In comparison to measurements, cloud-phase (i.e., liquid and ice partitioning) simulation appears to be improved in the new AM4.0. More supercooled liquid cloud is predicted in the new model, it is sustained even at temperatures lower than −25°C unlike in the original model. A more accurate accounting of ice nucleating particles and ice crystals is essential for improved cloud-phase simulation in the global atmosphere.


2012 ◽  
Vol 69 (6) ◽  
pp. 1994-2010 ◽  
Author(s):  
Lulin Xue ◽  
Amit Teller ◽  
Roy Rasmussen ◽  
Istvan Geresdi ◽  
Zaitao Pan ◽  
...  

Abstract A detailed bin aerosol-microphysics scheme has been implemented into the Weather Research and Forecast Model to investigate the effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation. Two-dimensional simulations of idealized moist flow over two identical bell-shaped mountains were carried out using different combinations of aerosol regeneration, solubility, loading, ice nucleation parameterizations, and humidity. The results showed the following. 1) Pollution and regenerated aerosols suppress the riming process in mixed-phase clouds by narrowing the drop spectrum. In general, the lower the aerosol solubility, the broader the drop spectrum and thus the higher the riming rate. When the solubility of initial aerosol increases with an increasing size of aerosol particles, the modified solubility of regenerated aerosols reduces precipitation. 2) The qualitative effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation are not affected by different ice nucleation parameterizations. 3) The impacts of aerosol properties on rain are similar in both warm- and mixed-phase clouds. Aerosols exert weaker impact on snow and stronger impact on graupel compared to rain as graupel production is strongly affected by riming. 4) Precipitation of both warm- and mixed-phase clouds is most sensitive to aerosol regeneration, then to aerosol solubility, and last to modified solubility of regenerated aerosol; however, the precipitation amount is mainly controlled by humidity and aerosol loading.


2018 ◽  
Vol 11 (10) ◽  
pp. 4021-4041 ◽  
Author(s):  
Sara Bacer ◽  
Sylvia C. Sullivan ◽  
Vlassis A. Karydis ◽  
Donifan Barahona ◽  
Martina Krämer ◽  
...  

Abstract. A comprehensive ice nucleation parameterization has been implemented in the global chemistry-climate model EMAC to improve the representation of ice crystal number concentrations (ICNCs). The parameterization of Barahona and Nenes (2009, hereafter BN09) allows for the treatment of ice nucleation taking into account the competition for water vapour between homogeneous and heterogeneous nucleation in cirrus clouds. Furthermore, the influence of chemically heterogeneous, polydisperse aerosols is considered by applying one of the multiple ice nucleating particle parameterizations which are included in BN09 to compute the heterogeneously formed ice crystals. BN09 has been modified in order to consider the pre-existing ice crystal effect and implemented to operate both in the cirrus and in the mixed-phase regimes. Compared to the standard EMAC parameterizations, BN09 produces fewer ice crystals in the upper troposphere but higher ICNCs in the middle troposphere, especially in the Northern Hemisphere where ice nucleating mineral dust particles are relatively abundant. Overall, ICNCs agree well with the observations, especially in cold cirrus clouds (at temperatures below 205 K), although they are underestimated between 200 and 220 K. As BN09 takes into account processes which were previously neglected by the standard version of the model, it is recommended for future EMAC simulations.


Sign in / Sign up

Export Citation Format

Share Document