scholarly journals The impact of overshooting deep convection on local transport and mixing in the tropical upper troposphere/lower stratosphere (UTLS)

2015 ◽  
Vol 15 (1) ◽  
pp. 1041-1091 ◽  
Author(s):  
W. Frey ◽  
R. Schofield ◽  
P. Hoor ◽  
D. Kunkel ◽  
F. Ravegnani ◽  
...  

Abstract. In this study we examine the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection to a deep convective system. We use the Advanced Research Weather and Research Forecasting (WRF-ARW) model with a horizontal resolution of 333 m to examine this downward transport. The simulation reproduces the deep convective system, its timing and overshooting altitudes reasonably well compared to radar and aircraft observations. Passive tracers initialised at pre-storm times indicate the downward transport of air from the stratosphere to the upper troposphere as well as upward transport from the boundary layer into the cloud anvils and overshooting tops. For example, a passive ozone tracer (i.e. a tracer not undergoing chemical processing) shows an enhancement in the upper troposphere of up to about 30 ppbv locally in the cloud, while the in situ measurements show an increase of 50 ppbv. However, the passive carbon monoxide tracer exhibits an increase, while the observations show a decrease of about 10 ppbv, indicative of an erroneous model representation of the transport processes in the tropical tropopause layer. Furthermore, it could point to insufficient entrainment and detrainment in the model. The simulation shows a general moistening of air in the lower stratosphere but it also exhibits local dehydration features. Here we use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.

2015 ◽  
Vol 15 (11) ◽  
pp. 6467-6486 ◽  
Author(s):  
W. Frey ◽  
R. Schofield ◽  
P. Hoor ◽  
D. Kunkel ◽  
F. Ravegnani ◽  
...  

Abstract. In this study we examine the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection with a deep convective system. We use the Advanced Research Weather and Research Forecasting (WRF-ARW) model with a horizontal resolution of 333 m to examine this downward transport. The simulation reproduces the deep convective system, its timing and overshooting altitudes reasonably well compared to radar and aircraft observations. Passive tracers initialised at pre-storm times indicate the downward transport of air from the stratosphere to the upper troposphere as well as upward transport from the boundary layer into the cloud anvils and overshooting tops. For example, a passive ozone tracer (i.e. a tracer not undergoing chemical processing) shows an enhancement in the upper troposphere of up to about 30 ppbv locally in the cloud, while the in situ measurements show an increase of 50 ppbv. However, the passive carbon monoxide tracer exhibits an increase, while the observations show a decrease of about 10 ppbv, indicative of an erroneous model representation of the transport processes in the tropical tropopause layer. Furthermore, it could point to insufficient entrainment and detrainment in the model. The simulation shows a general moistening of air in the lower stratosphere, but it also exhibits local dehydration features. Here we use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.


2007 ◽  
Vol 7 (1) ◽  
pp. 2389-2475 ◽  
Author(s):  
J.-P. Pommereau ◽  
A. Garnier ◽  
G. Held ◽  
A.-M. Gomes ◽  
F. Goutail ◽  
...  

Abstract. HIBISCUS was a field campaign for investigating the impact of deep convection on the Tropical Tropopause Layer (TTL) and the Lower Stratosphere, which took place during the Southern Hemisphere summer in February–March 2004 in the State of São Paulo, Brazil. Its objective was to provide a set of new observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical UT/LS from balloon observations at local scale over a land convective area, as well as at global scale using circumnavigating long-duration balloons. Overall, the composition of the TTL, the region between 14 and 19 km of intermediate lapse rate between the almost adiabatic upper troposphere and the stable stratosphere, appears highly variable. Tracers and ozone measurements performed at both the local and the global scale indicate a strong quasi-horizontal isentropic exchange with the lowermost mid-latitude stratosphere suggesting that the barrier associated to the tropical jet is highly permeable at these levels in summer. But the project also provides clear indications of strong episodic updraught of cold air, short-lived tracers, low ozone, humidity and ice particles across the lapse rate tropopause at about 15 km, up to 18 or 19 km at 420–440 K potential levels in the lower stratosphere, suggesting that, in contrast to oceanic convection penetrating little the stratosphere, fast daytime developing land convective systems could be a major mechanism in the troposphere-stratosphere exchange at the global scale. The present overview is meant to provide the background of the project, as well as overall information on the instrumental tools available, on the way they have been used within the highly convective context of the South Atlantic Convergence Zone, and a brief summary of the results, which will be detailed in several other papers of this special issue.


2010 ◽  
Vol 10 (2) ◽  
pp. 4927-4961 ◽  
Author(s):  
F. Fierli ◽  
E. Orlandi ◽  
K. S. Law ◽  
C. Cagnazzo ◽  
F. Cairo ◽  
...  

Abstract. We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL) in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow) and satellite data indicates that air detrainment is likely originated from convective cloud east of the flight. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that in the outflow of a large convective system, deep convection can largely modify chemical composition and aerosol distribution up to the tropical tropopause. Model analysis also shows that, on average, deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area) has a non negligible role in determining TTL composition.


2011 ◽  
Vol 11 (1) ◽  
pp. 201-214 ◽  
Author(s):  
F. Fierli ◽  
E. Orlandi ◽  
K. S. Law ◽  
C. Cagnazzo ◽  
F. Cairo ◽  
...  

Abstract. We present the analysis of the impact of convection on the composition of the tropical tropopause layer region (TTL) in West-Africa during the AMMA-SCOUT campaign. Geophysica M55 aircraft observations of water vapor, ozone, aerosol and CO2 during August 2006 show perturbed values at altitudes ranging from 14 km to 17 km (above the main convective outflow) and satellite data indicates that air detrainment is likely to have originated from convective cloud east of the flights. Simulations of the BOLAM mesoscale model, nudged with infrared radiance temperatures, are used to estimate the convective impact in the upper troposphere and to assess the fraction of air processed by convection. The analysis shows that BOLAM correctly reproduces the location and the vertical structure of convective outflow. Model-aided analysis indicates that convection can influence the composition of the upper troposphere above the level of main outflow for an event of deep convection close to the observation site. Model analysis also shows that deep convection occurring in the entire Sahelian transect (up to 2000 km E of the measurement area) has a non negligible role in determining TTL composition.


2007 ◽  
Vol 7 (14) ◽  
pp. 3713-3736 ◽  
Author(s):  
B. N. Duncan ◽  
S. E. Strahan ◽  
Y. Yoshida ◽  
S. D. Steenrod ◽  
N. Livesey

Abstract. We present a modeling study of the troposphere-to-stratosphere transport (TST) of pollution from major biomass burning regions to the tropical upper troposphere and lower stratosphere (UT/LS). TST occurs predominately through 1) slow ascent in the tropical tropopause layer (TTL) to the LS and 2) quasi-horizontal exchange to the lowermost stratosphere (LMS). We show that biomass burning pollution regularly and significantly impacts the composition of the TTL, LS, and LMS. Carbon monoxide (CO) in the LS in our simulation and data from the Aura Microwave Limb Sounder (MLS) shows an annual oscillation in its composition that results from the interaction of an annual oscillation in slow ascent from the TTL to the LS and seasonal variations in sources, including a semi-annual oscillation in CO from biomass burning. The impacts of CO sources that peak when ascent is seasonally low are damped (e.g. Southern Hemisphere biomass burning) and vice-versa for sources that peak when ascent is seasonally high (e.g. extra-tropical fossil fuels). Interannual variation of CO in the UT/LS is caused primarily by year-to-year variations in biomass burning and the locations of deep convection. During our study period, 1994–1998, we find that the highest concentrations of CO in the UT/LS occurred during the strong 1997–1998 El Niño event for two reasons: i. tropical deep convection shifted to the eastern Pacific Ocean, closer to South American and African CO sources, and ii. emissions from Indonesian biomass burning were higher. This extreme event can be seen as an upper bound on the impact of biomass burning pollution on the UT/LS. We estimate that the 1997 Indonesian wildfires increased CO in the entire TTL and tropical LS (>60 mb) by more than 40% and 10%, respectively, for several months. Zonal mean ozone increased and the hydroxyl radical decreased by as much as 20%, increasing the lifetimes and, subsequently TST, of trace gases. Our results indicate that the impact of biomass burning pollution on the UT/LS is likely greatest during an El Niño event due to favorable dynamics and historically higher burning rates.


2021 ◽  
Author(s):  
Kunihiko Kodera ◽  
Nawo Eguchi ◽  
Rei Ueyama ◽  
Beatriz Funatsu ◽  
Marco Gaetani ◽  
...  

<p>Previous studies have suggested that the recent increase in tropical extreme deep convection, in particular over Asia and Africa during the boreal summer, has occurred in association with a cooling in the tropical lower stratosphere. The present study is focused on the Sahel region of West Africa, where an increased occurrence of extreme precipitation events has been reported over recent decades. The results show that the changes since the 1980s involve a cooling trend in the tropical lower stratosphere and tropopause layer, combined with a warming in the troposphere. This feature is similar to that which might result from increased greenhouse gas levels. It is suggested that the decrease in the vertical temperature gradient in the tropical tropopause region enhances extreme deep convection where penetrating convection is frequent, whereas tropospheric warming suppresses the shallower convection. The essential feature of the recent changes over the tropics is therefore the depth of convection, rather than the total amount of surface precipitation. This could enhance cooling in the lower stratosphere through decrease in ozone concentration.</p><p> </p>


2010 ◽  
Vol 10 (8) ◽  
pp. 3615-3627 ◽  
Author(s):  
C. D. Homan ◽  
C. M. Volk ◽  
A. C. Kuhn ◽  
A. Werner ◽  
J. Baehr ◽  
...  

Abstract. We present airborne in situ measurements made during the AMMA (African Monsoon Multidisciplinary Analysis)/SCOUT-O3 campaign between 31 July and 17 August 2006 on board the M55 Geophysica aircraft, based in Ouagadougou, Burkina Faso. CO2 and N2O were measured with the High Altitude Gas Analyzer (HAGAR), CO was measured with the Cryogenically Operated Laser Diode (COLD) instrument, and O3 with the Fast Ozone ANalyzer (FOZAN). We analyse the data obtained during five local flights to study the dominant transport processes controlling the tropical tropopause layer (TTL, here ~350–375 K) and lower stratosphere above West-Africa: deep convection up to the level of main convective outflow, overshooting of deep convection, and horizontal inmixing across the subtropical tropopause. Besides, we examine the morphology of the stratospheric subtropical barrier. Except for the flight of 13 August, distinct minima in CO2 mixing ratios indicate convective outflow of boundary layer air in the TTL. The CO2 profiles show that the level of main convective outflow was mostly located at potential temperatures between 350 and 360 K, and for 11 August reached up to 370 K. While the CO2 minima indicate quite significant convective influence, the O3 profiles suggest that the observed convective signatures were mostly not fresh, but of older origin (several days or more). When compared with the mean O3 profile measured during a previous campaign over Darwin in November 2005, the O3 minimum at the main convective outflow level was less pronounced over Ouagadougou. Furthermore O3 mixing ratios were much higher throughout the whole TTL and, unlike over Darwin, rarely showed low values observed in the regional boundary layer. Signatures of irreversible mixing following overshooting of convective air were scarce in the tracer data. Some small signatures indicative of this process were found in CO2 profiles between 390 and 410 K during the flights of 4 and 8 August, and in CO data at 410 K on 7 August. However, the absence of expected corresponding signatures in other tracer data makes this evidence inconclusive, and overall there is little indication from the observations that overshooting convection has a profound impact on gas-phase tracer TTL composition during AMMA. We find the amount of photochemically aged air isentropically mixed into the TTL across the subtropical tropopause to be not significant. Using the N2O observations we estimate the fraction of aged extratropical stratospheric air in the TTL to be 0.0±0.1 up to 370 K during the local flights. Above the TTL this fraction increases to 0.3±0.1 at 390 K. The subtropical barrier, as indicated by the slope of the correlation between N2O and O3 between 415 and 490 K, does not appear as a sharp border between the tropics and extratropics, but rather as a gradual transition region between 10° N and 25° N where isentropic mixing between these two regions may occur.


2005 ◽  
Vol 5 (5) ◽  
pp. 9169-9205
Author(s):  
E. D. Rivière ◽  
V. Marécal ◽  
N. Larsen ◽  
S. Cautenet

Abstract. In this second part of a series of two papers which aim to study the local impact of deep convection on the chemical composition of the Upper Troposphere and Lower Stratosphere (UTLS), we focus on ozone simulation results using a mesoscale model that includes on-line chemistry. A severe convective system observed on 8 February 2001 at Bauru, Brazil, is studied. We show that there is an increase in the ozone concentration in the tropical transitional layer (TTL) in the model during this event, which is compatible with ozone sonde observations from Bauru during the 2004 convective season. The model horizontal variability of ozone in this layer is comparable with the variability of the ozone sonde observations in the same area. The calculation of the ozone budget in the TTL shows that the ozone behaviour in this layer is mainly driven by dynamics. The upward motions at the bottom of the TTL, related to the convection activity is the main contributor to the budget since it can explain 75% of the total ozone increase in the TTL, while the chemical ozone production inside the TTL is estimated to be 23.5% of the ozone increase if NOx production by lightning (LNOx) is taken into account. It is shown that downward motions at the tropopause induced by gravity waves generated by deep convection are non negligible in the TTL ozone budget, since it represents 11% of the ozone increase. The correlation between the convection activity and the vertical flux at 13 km, the vertical flux at 17 km, and the chemical production is brought to the fore in this simulation.


2017 ◽  
Vol 74 (11) ◽  
pp. 3847-3869 ◽  
Author(s):  
Aurélien Podglajen ◽  
T. Paul Bui ◽  
Jonathan M. Dean-Day ◽  
Leonhard Pfister ◽  
Eric J. Jensen ◽  
...  

Abstract The contribution of turbulent mixing to heat and tracer transport in the tropical tropopause layer (TTL) is poorly constrained, partly owing to a lack of direct observations. Here, the authors use high-resolution (20 Hz) airborne measurements to study the occurrence and properties of small-scale (<100 m) wind fluctuations in the TTL (14–19 km) over the tropical Pacific. The fluctuations are highly intermittent and appear localized within shallow (100 m) patches. Furthermore, active turbulent events are more frequent at low altitude, near deep convection, and within layers of low gradient Richardson number. A case study emphasizes the link between the turbulent events and the occurrence of inertio-gravity waves having small horizontal or vertical scale. To evaluate the impact of the observed fluctuations on tracer mixing, their characteristics are examined. During active events, they are in broad agreement with inertial-range turbulence theory: the motions are close to 3D isotropic and the spectra follow a −5/3 power-law scaling. The diffusivity induced by turbulent bursts is estimated to be on the order of 10−1 m2 s−1 and increases from the top to the bottom of the TTL (from ~2 × 10−2 to ~3 × 10−1 m2 s−1). Given the uncertainties involved in the estimate, this is in reasonable agreement (about a factor of 3–4 lower) with the parameterized turbulent diffusivity in ERA-Interim, but it disagrees with other observational estimates from radar and radiosondes. The magnitude of the consequent vertical transport depends on the altitude and the tracer; for the species considered, it is generally smaller than that induced by the mean tropical upwelling.


2018 ◽  
Vol 18 (3) ◽  
pp. 1819-1833 ◽  
Author(s):  
Satoshi Sugawara ◽  
Shigeyuki Ishidoya ◽  
Shuji Aoki ◽  
Shinji Morimoto ◽  
Takakiyo Nakazawa ◽  
...  

Abstract. The gravitational separation of major atmospheric components, in addition to the age of air, would provide additional useful information about stratospheric circulation. However, observations of the age of air and gravitational separation are still geographically sparse, especially in the tropics. In order to address this issue, air samples were collected over Biak, Indonesia in February 2015 using four large plastic balloons, each loaded with two compact cryogenic samplers. With a vertical resolution of better than 2 km, air samples from seven different altitudes were analyzed for CO2 and SF6 mole fractions, δ15N of N2, δ18O of O2, and δ(Ar∕N2) to examine the vertically dependent age and gravitational separation of air in the tropical tropopause layer (TTL) and the equatorial stratosphere. By comparing their measured mole fractions with aircraft observations in the upper tropical troposphere, we have found that CO2 and SF6 ages increase gradually with increasing altitude from the TTL to 22 km, and then rapidly from there up to 29 km. The CO2 and SF6 ages agree well with each other in the TTL and in the lower stratosphere, but show a significant difference above 24 km. The average values of δ15N of N2, δ18O of O2, and δ(Ar∕N2) all show a small but distinct upward decrease due to the gravitational separation effect. Simulations with a two-dimensional atmospheric transport model indicate that the gravitational separation effect decreases as tropical upwelling is enhanced. From the model calculations with enhanced eddy mixing, it is also found that the upward increase in air age is magnified by horizontal mixing. These model simulations also show that the gravitational separation effect remains relatively constant in the lower stratosphere. The results of this study strongly suggest that the gravitational separation, combined with the age of air, can be used to diagnose air transport processes in the stratosphere.


Sign in / Sign up

Export Citation Format

Share Document