scholarly journals Meteorological constraints on oceanic halocarbons above the Peruvian Upwelling

2015 ◽  
Vol 15 (14) ◽  
pp. 20597-20628 ◽  
Author(s):  
S. Fuhlbrügge ◽  
B. Quack ◽  
E. Atlas ◽  
A. Fiehn ◽  
H. Hepach ◽  
...  

Abstract. Halogenated very short lived substances (VSLS) are naturally produced in the ocean and emitted to the atmosphere. Recently, oceanic upwelling regions in the tropical East Atlantic were identified as strong sources of brominated halocarbons to the atmosphere. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian Upwelling for the first time. This study presents novel observations of the three VSLS bromoform, dibromomethane and methyl iodide together with high resolution meteorological measurements and Lagrangian transport modelling. Although relatively low oceanic emissions were observed, except for methyl iodide, surface atmospheric abundances were elevated. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting both as strong barriers for convection and trace gas transport in this region. Significant correlations between observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height were found. We used a simple source-loss estimate to identify the contribution of oceanic emissions to observed atmospheric concentrations which revealed that the observed marine VSLS abundances were dominated by horizontal advection below the trade inversion. The observed VSLS variations can be explained by the low emissions and their accumulation under different MABL and trade inversion conditions. This study confirms the importance of oceanic upwelling and trade wind systems on creating effective transport barriers in the lower atmosphere controlling the distribution of VSLS abundances above ocean upwelling regions.

2016 ◽  
Vol 16 (18) ◽  
pp. 12205-12217 ◽  
Author(s):  
Steffen Fuhlbrügge ◽  
Birgit Quack ◽  
Elliot Atlas ◽  
Alina Fiehn ◽  
Helmke Hepach ◽  
...  

Abstract. During a cruise of R/V METEOR in December 2012 the oceanic sources and emissions of various halogenated trace gases and their mixing ratios in the marine atmospheric boundary layer (MABL) were investigated above the Peruvian upwelling. This study presents novel observations of the three very short lived substances (VSLSs) – bromoform, dibromomethane and methyl iodide – together with high-resolution meteorological measurements, Lagrangian transport and source–loss calculations. Oceanic emissions of bromoform and dibromomethane were relatively low compared to other upwelling regions, while those for methyl iodide were very high. Radiosonde launches during the cruise revealed a low, stable MABL and a distinct trade inversion above acting as strong barriers for convection and vertical transport of trace gases in this region. Observed atmospheric VSLS abundances, sea surface temperature, relative humidity and MABL height correlated well during the cruise. We used a simple source–loss estimate to quantify the contribution of oceanic emissions along the cruise track to the observed atmospheric concentrations. This analysis showed that averaged, instantaneous emissions could not support the observed atmospheric mixing ratios of VSLSs and that the marine background abundances below the trade inversion were significantly influenced by advection of regional sources. Adding to this background, the observed maximum emissions of halocarbons in the coastal upwelling could explain the high atmospheric VSLS concentrations in combination with their accumulation under the distinct MABL and trade inversions. Stronger emissions along the nearshore coastline likely added to the elevated abundances under the steady atmospheric conditions. This study underscores the importance of oceanic upwelling and trade wind systems on the atmospheric distribution of marine VSLS emissions.


2015 ◽  
Vol 15 (13) ◽  
pp. 17887-17943 ◽  
Author(s):  
S. Fuhlbrügge ◽  
B. Quack ◽  
S. Tegtmeier ◽  
E. Atlas ◽  
H. Hepach ◽  
...  

Abstract. Emissions of halogenated very short lived substances (VSLS) from the tropical oceans contribute to the atmospheric halogen budget and affect tropospheric and stratospheric ozone. Here we investigate the contribution of natural oceanic VSLS emissions to the Marine Atmospheric Boundary Layer (MABL) and their transport into the Free Troposphere (FT) over the tropical West Pacific. The study concentrates in particular on ship and aircraft measurements of the VSLS bromoform, dibromomethane and methyl iodide and meteorological parameters during the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in the South China and Sulu Seas in November 2011. Elevated oceanic concentrations of 19.9 (2.80–136.91) pmol L−1 for bromoform, 5.0 (2.43–21.82) pmol L−1 for dibromomethane and 3.8 (0.55–18.83) pmol L−1 for methyl iodide in particular close to Singapore and at the coast of Borneo with high corresponding oceanic emissions of 1486 ± 1718 pmol m−2 h−1 for bromoform, 405 ± 349 pmol m−2 h−1 for dibromomethane and 433 ± 482 pmol m−2 h−1 for methyl iodide characterize this tropical region as a strong source of these compounds. Unexpectedly atmospheric mixing ratios in the MABL were relatively low with 2.08 ± 2.08 ppt for bromoform, 1.17 ± 1.17 ppt for dibromomethane and 0.39 ± 0.09 ppt for methyl iodide. We use meteorological and chemical ship and aircraft observations, FLEXPART trajectory calculations and source-loss estimates to identify the oceanic VSLS contribution to the MABL and to the FT. Our results show that a convective, well-ventilated MABL and intense convection led to the low atmospheric mixing ratios in the MABL despite the high oceanic emissions in coastal areas of the South-China and Sulu Seas. While the accumulated bromoform in the FT above the region origins almost entirely from the local South China Sea area, dibromomethane is largely advected from distant source regions. The accumulated FT mixing ratio of methyl iodide is higher than can be explained with the local oceanic or MABL contributions. Possible reasons, uncertainties and consequences of our observations and model estimates are discussed.


2016 ◽  
Vol 16 (12) ◽  
pp. 7569-7585 ◽  
Author(s):  
Steffen Fuhlbrügge ◽  
Birgit Quack ◽  
Susann Tegtmeier ◽  
Elliot Atlas ◽  
Helmke Hepach ◽  
...  

Abstract. Emissions of halogenated very-short-lived substances (VSLSs) from the oceans contribute to the atmospheric halogen budget and affect tropospheric and stratospheric ozone. Here, we investigate the contribution of natural oceanic VSLS emissions to the marine atmospheric boundary layer (MABL) and their transport into the free troposphere (FT) over the tropical West Pacific. The study concentrates on bromoform, dibromomethane and methyl iodide measured on ship and aircraft during the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere) campaign in the South China and Sulu seas in November 2011. Elevated oceanic concentrations for bromoform, dibromomethane and methyl iodide of on average 19.9, 5.0 and 3.8 pmol L−1, in particular close to Singapore and to the coast of Borneo, with high corresponding oceanic emissions of 1486, 405 and 433 pmol m−2 h−1 respectively, characterise this tropical region as a strong source of these compounds. Atmospheric mixing ratios in the MABL were unexpectedly relatively low with 2.08, 1.17 and 0.39 ppt for bromoform, dibromomethane and methyl iodide. We use meteorological and chemical ship and aircraft observations, FLEXPART trajectory calculations and source-loss estimates to identify the oceanic VSLS contribution to the MABL and to the FT. Our results show that the well-ventilated MABL and intense convection led to the low atmospheric mixing ratios in the MABL despite the high oceanic emissions. Up to 45 % of the accumulated bromoform in the FT above the region originates from the local South China Sea area, while dibromomethane is largely advected from distant source regions and the local ocean only contributes 20 %. The accumulated methyl iodide in the FT is higher than can be explained with local contributions. Possible reasons, uncertainties and consequences of our observations and model estimates are discussed.


2018 ◽  
Vol 18 (16) ◽  
pp. 11973-11990 ◽  
Author(s):  
Alina Fiehn ◽  
Birgit Quack ◽  
Irene Stemmler ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Oceanic very short-lived substances (VSLSs), such as bromoform (CHBr3), contribute to stratospheric halogen loading and, thus, to ozone depletion. However, the amount, timing, and region of bromine delivery to the stratosphere through one of the main entrance gates, the Indian summer monsoon circulation, are still uncertain. In this study, we created two bromoform emission inventories with monthly resolution for the tropical Indian Ocean and west Pacific based on new in situ bromoform measurements and novel ocean biogeochemistry modeling. The mass transport and atmospheric mixing ratios of bromoform were modeled for the year 2014 with the particle dispersion model FLEXPART driven by ERA-Interim reanalysis. We compare results between two emission scenarios: (1) monthly averaged and (2) annually averaged emissions. Both simulations reproduce the atmospheric distribution of bromoform from ship- and aircraft-based observations in the boundary layer and upper troposphere above the Indian Ocean reasonably well. Using monthly resolved emissions, the main oceanic source regions for the stratosphere include the Arabian Sea and Bay of Bengal in boreal summer and the tropical west Pacific Ocean in boreal winter. The main stratospheric injection in boreal summer occurs over the southern tip of India associated with the high local oceanic sources and strong convection of the summer monsoon. In boreal winter more bromoform is entrained over the west Pacific than over the Indian Ocean. The annually averaged stratospheric injection of bromoform is in the same range whether using monthly averaged or annually averaged emissions in our Lagrangian calculations. However, monthly averaged emissions result in the highest mixing ratios within the Asian monsoon anticyclone in boreal summer and above the central Indian Ocean in boreal winter, while annually averaged emissions display a maximum above the west Indian Ocean in boreal spring. In the Asian summer monsoon anticyclone bromoform atmospheric mixing ratios vary by up to 50 % between using monthly averaged and annually averaged oceanic emissions. Our results underline that the seasonal and regional stratospheric bromine injection from the tropical Indian Ocean and west Pacific critically depend on the seasonality and spatial distribution of the VSLS emissions.


1956 ◽  
Vol 34 (9) ◽  
pp. 1302-1314 ◽  
Author(s):  
D. L. Vincent ◽  
C. B. Purves

n-Octadecyl S-methyl xanthate, m.p. 38–39°, and n-hexadecyl S-methyl xanthate, m.p. 28–28.5°, were prepared for the first time, and were used to study the behavior of the S-methyl xanthate group toward reagents commonly used in research on carbohydrates. Although stable to some conditions of acetylation, hydrolysis, and methanolysis, the S-methyl xanthate group was destroyed by all methylating agents tried, with the exception of nitrosomethylurethane. The latter reagent converted a sodium xanthate salt in high yield to the S-methyl ester. Octadecyl and hexadecyl S-methyl xanthates when oxidized with hydrogen peroxide yielded crystalline substances of composition C20H40O4S2 and C18H36O4S2, respectively, whose structures were not determined. These substances each contained three additional oxygen atoms. Various attempts to estimate the S-methyl xanthate group by oxidation with bromine or periodic acid, or by reduction to methyl iodide, were unsuccessful.


2012 ◽  
Vol 5 (1) ◽  
pp. 947-978 ◽  
Author(s):  
J. L. Ambrose ◽  
Y. Zhou ◽  
K. Haase ◽  
H. R. Mayne ◽  
R. Talbot ◽  
...  

Abstract. A gas-chromatographic (GC) instrument was developed for measuring hydrogen cyanide (HCN) in the lower atmosphere. The main features of the instrument are (1) a cryogen-free cooler for sample dehumidification and enrichment, (2) a porous polymer PLOT column for analyte separation, (3) a flame thermionic detector (FTD) for sensitive and selective detection and (4) a dynamic dilution system for calibration. We deployed the instrument for a ~4 month period from January–June 2010 at the AIRMAP atmospheric monitoring station Thompson Farm 2 (THF2) in rural Durham, NH. A subset of measurements made during 3–31 March is presented here with a detailed description of the instrument features and performance characteristics. The temporal resolution of the measurements was ~20 min, with a 75 s sample capture time. The 1σ measurement precision was <10% and the instrument response linearity was excellent on a calibration scale of 0.10–0.75 ppbv (±5%). The estimated method detection limit (MDL) and accuracy were 0.021 ppbv and 15%, respectively. From 3–31 March 2010, ambient HCN mixing ratios ranged from 0.15–1.0 ppbv (±15%), with a mean value of 0.36 ± 0.16 ppbv (1σ). The approximate mean background HCN mixing ratio of 0.20 ± 0.04 ppbv appeared to agree well with tropospheric column measurements reported previously. The GC-FTD HCN measurements were strongly correlated with acetonitrile (CH3CN) measured concurrently with a proton transfer-reaction mass spectrometer (PTR-MS), as anticipated given our understanding that the nitriles share a common primary biomass burning source to the global atmosphere. The nitriles were overall only weakly correlated with CO, which is reasonable considering the greater diversity of sources for CO. However, strong correlations with CO were observed on several nights under stable atmospheric conditions and suggest regional combustion-based sources for the nitriles. These results demonstrate that the GC-FTD instrument is capable of making long term, in-situ measurements of HCN in the lower atmosphere. To date, similar measurements have not been performed, yet they are critically needed to (1) better evaluate the regional scale distribution of HCN in the atmosphere and (2) discern the influence of biomass burning on surface air composition in remote regions.


2015 ◽  
Vol 12 (4) ◽  
pp. 438 ◽  
Author(s):  
Robert Holla ◽  
Stefan Schmitt ◽  
Udo Frieß ◽  
Denis Pöhler ◽  
Jutta Zingler ◽  
...  

Environmental context Reactive halogen species affect chemical processes in the troposphere in many ways. The reactive bromine species bromine monoxide (BrO) is found in high concentrations at the Dead Sea, but processes for its formation and its spatial distribution are largely unknown. Information on the vertical distribution of BrO at the Dead Sea obtained in this work may give insight into the processes leading to BrO release and its consequences. Abstract We present results of multi-axis differential optical absorption spectroscopy (MAX‐DOAS) and long‐path DOAS (LP‐DOAS) measurements from two measurement campaigns at the Dead Sea in 2002 and 2012. The special patterns of its dynamics and topography in combination with the high salt and especially bromide content of its water lead to the particular large atmospheric abundances of more than 100 ppt BrO close to the ground and in several hundred meters above ground level. We conclude that vertical transport barriers induced by the special dynamics in the Dead Sea Valley lead to an accumulation of aerosol and reactive bromine species. This occurs in situations of weak synoptic winds and of mountain induced thermal circulations. Thus BrO release strongly depends on the topography and local and meso-scale meteorology. In case of strong zonal winds, the Dead Sea valley is flushed and high BrO levels cannot accumulate. NO2 levels below 1–2 ppb seem to be a prerequisite for a high BrO production. We assume that at least a part of the missing NO2 might be converted to BrONO2 leading to a deposition of nitrate within the aerosol and acting as a reservoir for reactive bromine. From these measurements, it was possible for the first time to simultaneously retrieve vertical profiles of aerosols, BrO and NO2 and gain also information on the distribution at the Dead Sea, allowing for a thorough characterization of the chemical processes leading to halogen release in the context of the special atmospheric dynamics in the Dead Sea Valley.


2020 ◽  
Author(s):  
Oliver Kirner ◽  
Jöckel Patrick ◽  
Sören Johansson ◽  
Gerald Wetzel ◽  
Franziska Winterstein

&lt;p&gt;The increasing future methane (CH&lt;sub&gt;4&lt;/sub&gt;) leads to changes in the lifetime of CH&lt;sub&gt;4&lt;/sub&gt; and in the Hydroxyl radical (OH) and (O&lt;sub&gt;3&lt;/sub&gt;) mixing ratios and distribution in the lower atmosphere. With increasing CH&lt;sub&gt;4&lt;/sub&gt; the lifetime of CH&lt;sub&gt;4&lt;/sub&gt; and the O&lt;sub&gt;3&lt;/sub&gt; mixing ratios in the troposphere will increase, the tropospheric OH mixing ratios will decrease (Winterstein et al., 2019; Zhao et al., 2019). The CH&lt;sub&gt;4&lt;/sub&gt; changes, together with the future Nitrous oxide (N&lt;sub&gt;2&lt;/sub&gt;O) and temperature increase, will lead to a different tropospheric chemistry. For example, substances as acetone (CH&lt;sub&gt;3&lt;/sub&gt;COCH&lt;sub&gt;3&lt;/sub&gt;), ethane (C&lt;sub&gt;2&lt;/sub&gt;H&lt;sub&gt;6&lt;/sub&gt;), formic acid (HCOOH) or peroxy acetyl nitrate (PAN) will change their distribution and mixing ratios.&lt;/p&gt;&lt;p&gt;In different studies we could show that EMAC (ECHAM/MESSy Atmospheric Chemistry, J&amp;#246;ckel et al., 2010) has the ability to simulate some of the mentioned tropospheric substances in comparison to results of the GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) instrument, used on board of the research aircrafts Geophysica and HALO during the STRATOCLIM (July/August 2017) and WISE (August to October 2017) campaigns (Johansson et al., 2020; Wetzel et al., 2020).&amp;#160; &amp;#160;&lt;/p&gt;&lt;p&gt;In this study, we will additional show the first results of the simulated future changes of tropospheric chemistry (especially with focus on CH&lt;sub&gt;3&lt;/sub&gt;COCH&lt;sub&gt;3&lt;/sub&gt;, C&lt;sub&gt;2&lt;/sub&gt;H&lt;sub&gt;6&lt;/sub&gt;, HCOOH and PAN and the upper troposphere) related to the future increase of CH&lt;sub&gt;4&lt;/sub&gt;, N&lt;sub&gt;2&lt;/sub&gt;O and temperature change as a result of climate change. For these we use different EMAC simulations from the project ESCiMo (Earth System Chemistry Integrated Modelling, J&amp;#246;ckel et al., 2016).&lt;/p&gt;&lt;p&gt;We will present some results of the comparison of EMAC to GLORIA and results with regard to the future development of the (upper) tropospheric chemistry in EMAC. &amp;#160;&amp;#160;&amp;#160;&lt;/p&gt;


1979 ◽  
Vol 57 (8) ◽  
pp. 1196-1203 ◽  
Author(s):  
V. U. Patil ◽  
R. G. Kulkarni

Low-lying negative parity levels in 45Sc were Coulomb excited with 2.5 to 3.5 MeV protons and 4 to 5 MeV 4He ions to test the weak coupling core-excitation model. A Ge(Li) detector was used to measure the gamma-ray yields. The 543, 976, 1408, and 1662 keV levels in 45Sc were Coulomb excited for the first time. Gamma-ray angular distributions were measured at 3.0 MeV proton energy in deducing multipole mixing ratios and spin values. Energy level measurements (in units of kiloelectronvolts) and spin values obtained are as follows: 976, 5/2, 7/2 and 1408, 7/2. The E2 and M1 reduced transition probabilities were determined for the six states. The 376, 720, 1237, 1408, and 1662 keV levels have properties consistent with the interpretation of coupling a 1f7/2 proton to the first 2+ core state.


2009 ◽  
Vol 9 (19) ◽  
pp. 7419-7429 ◽  
Author(s):  
L. Labrador ◽  
G. Vaughan ◽  
W. Heyes ◽  
D. Waddicor ◽  
A. Volz-Thomas ◽  
...  

Abstract. Measurements of nitrogen oxides onboard a high altitude aircraft were carried out for the first time during the Northern Australian monsoon in the framework of the Aerosol and Chemical Transport in Tropical Convection (ACTIVE) campaign, in the area around Darwin, Australia. During one flight on 22 January 2006, average NOx volume mixing ratios (vmr) of 984 and 723 parts per trillion (ppt) were recorded for both in and out of cloud conditions, respectively. The in-cloud measurements were made in the convective outflow region of a storm 56 km south-west of Darwin, whereas those out of cloud were made due south of Darwin and upwind from the storm sampled. This storm produced a total of only 8 lightning strokes, as detected by an in-situ lightning detection network, ruling out significant lightning-NOx production. 5-day backward trajectories suggest that the sampled airmasses had travelled over convectively-active land in Northern Australia during that period. The low stroke count of the sampled storm, along with the high out-of-cloud NOx concentration, suggest that, in the absence of other major NOx sources during the monsoon season, a combination of processes including regional transport patterns, convective vertical transport and entrainment may lead to accumulation of lightning-produced NOx, a situation that contrasts with the pre-monsoon period in Northern Australia, where the high NOx values occur mainly in or in the vicinity of storms. These high NOx concentrations may help start ozone photochemistry and OH radical production in an otherwise NOx-limited environment.


Sign in / Sign up

Export Citation Format

Share Document