scholarly journals Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

2005 ◽  
Vol 5 (3) ◽  
pp. 2791-2831 ◽  
Author(s):  
P. Guyon ◽  
G. Frank ◽  
M. Welling ◽  
D. Chand ◽  
P. Artaxo ◽  
...  

Abstract. As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign, we studied the emission of carbon monoxide (CO), carbon dioxide (CO2), and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN) relative to CO (ERCN/CO) fell in the range 14–32 cm-3 ppb-1 for most of the time, in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependant on the fire condition (combustion efficiency). Variability in the ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2), which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, indicating that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF) for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC) fraction of emissions that are not sampled by the aircraft. The correction, previously unpublished for tropical deforestation fires, suggested an EF about one and a half to twice as large for these species. Vertical transport of biomass-burning plumes from the boundary layer (BL) to the cloud detrainment layer (CDL) and the free troposphere (FT) was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non-precipitating clouds. The detrained aerosol particles released in the CDL and FT were larger due to coagulation and secondary growth, and therefore more efficient at scattering radiation and nucleating cloud droplets than the fresh particles. This process may have significant atmospheric implications on a regional and larger scale.

2005 ◽  
Vol 5 (11) ◽  
pp. 2989-3002 ◽  
Author(s):  
P. Guyon ◽  
G. P. Frank ◽  
M. Welling ◽  
D. Chand ◽  
P. Artaxo ◽  
...  

Abstract. As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign, we studied the emission of carbon monoxide (CO), carbon dioxide (CO2), and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN) relative to CO (ERCN/CO) fell in the range 14-32 cm-3 ppb-1 in most of the investigated smoke plumes. Particle number emission ratios have to our knowledge not been previously measured in tropical deforestation fires, but our results are in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependent on the fire conditions (combustion efficiency). Variability in ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2), which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, reflecting the fact that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF) for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC) fraction of emissions that are not sampled by the aircraft, which increased the EF by a factor of 1.5-2.1. Vertical transport of smoke from the boundary layer (BL) to the cloud detrainment layer (CDL) and the free troposphere (FT) was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non-precipitating clouds. The detrained aerosol particles released in the CDL and FT were larger than in the unprocessed smoke, mostly due to coagulation and secondary growth, and therefore more efficient at scattering radiation and nucleating cloud droplets. This process may have significant atmospheric implications on a regional and larger scale.


2012 ◽  
Vol 12 (13) ◽  
pp. 6041-6065 ◽  
Author(s):  
M. O. Andreae ◽  
P. Artaxo ◽  
V. Beck ◽  
M. Bela ◽  
S. Freitas ◽  
...  

Abstract. We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November–December 2008 (BARCA-A) and May–June 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm−3; the highest values were in the southern part of the Basin at altitudes of 1–3 km. The ΔCN/ΔCO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300–500 cm−3) prevailed basinwide, and CO mixing ratios were enhanced by only ~10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no detectable trend in CO with distance from the coast, but there was a small enhancement of CO in the boundary layer suggesting diffuse biogenic sources from photochemical degradation of biogenic volatile organic compounds or direct biological emission. Simulations of CO distributions during BARCA-A using a range of models yielded general agreement in spatial distribution and confirm the important contribution from biomass burning emissions, but the models evidence some systematic quantitative differences compared to observed CO concentrations. These mismatches appear to be related to problems with the accuracy of the global background fields, the role of vertical transport and biomass smoke injection height, the choice of model resolution, and reliability and temporal resolution of the emissions data base.


2021 ◽  
Vol 21 (2) ◽  
pp. 597-616
Author(s):  
Ivar R. van der Velde ◽  
Guido R. van der Werf ◽  
Sander Houweling ◽  
Henk J. Eskes ◽  
J. Pepijn Veefkind ◽  
...  

Abstract. The global fire emission inventories depend on ground and airborne measurements of species-specific emission factors (EFs), which translate dry matter losses due to fires to actual trace gas and aerosol emissions. The EFs of nitrogen oxides (NOx) and carbon monoxide (CO) can function as a proxy for combustion efficiency to distinguish flaming from smoldering combustion. The uncertainties in these EFs remain large as they are limited by the spatial and temporal representativeness of the measurements. The global coverage of satellite observations has the advantage of filling this gap, making these measurements highly complementary to ground-based or airborne data. We present a new analysis of biomass burning pollutants using space-borne data to investigate the spatiotemporal efficiency of fire combustion. Column measurements of nitrogen dioxide and carbon monoxide (XNO2 and XCO) from the TROPOspheric Monitoring Instrument (TROPOMI) are used to quantify the relative atmospheric enhancements of these species over different fire-prone regions around the world. We find spatial and temporal patterns in the ΔXNO2 ∕ ΔXCO ratio that point to distinct differences in biomass burning behavior. Such differences are induced by the burning phase of the fire (e.g., high-temperature flaming vs. low-temperature smoldering combustion) and burning practice (e.g., the combustion of logs, coarse woody debris and soil organic matter vs. the combustion of fine fuels such as savanna grasses). The sampling techniques and the signal-to-noise ratio of the retrieved ΔXNO2 ∕ ΔXCO signals were quantified with WRF-Chem experiments and showed similar distinct differences in combustion types. The TROPOMI measurements show that the fraction of surface smoldering combustion is much larger for the boreal forest fires in the upper Northern Hemisphere and peatland fires in Indonesia. These types of fires cause a much larger increase (3 to 6 times) in ΔXCO relative to ΔXNO2 than elsewhere in the world. The high spatial and temporal resolution of TROPOMI also enables the detection of spatial gradients in combustion efficiency at smaller regional scales. For instance, in the Amazon, we found higher combustion efficiency (up to 3-fold) for savanna fires than for the nearby tropical deforestation fires. Out of two investigated fire emission products, the TROPOMI measurements support the broad spatial pattern of combustion efficiency rooted in GFED4s. Meanwhile, TROPOMI data also add new insights into regional variability in combustion characteristics that are not well represented in the different emission inventories, which can help the fire modeling community to improve their representation of the spatiotemporal variability in EFs.


2021 ◽  
Vol 21 (5) ◽  
pp. 3607-3626
Author(s):  
Kouji Adachi ◽  
Naga Oshima ◽  
Sho Ohata ◽  
Atsushi Yoshida ◽  
Nobuhiro Moteki ◽  
...  

Abstract. Aerosol particles were collected at various altitudes in the Arctic during the Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project 2018 (PAMARCMiP 2018) conducted in the early spring of 2018. The composition, size, number fraction, and mixing state of individual aerosol particles were analyzed using transmission electron microscopy (TEM), and their sources and transport were evaluated by numerical model simulations. We found that sulfate, sea-salt, mineral-dust, K-bearing, and carbonaceous particles were the major aerosol constituents. Many particles were composed of two or more compositions that had coagulated and were coated with sulfate, organic materials, or both. The number fraction of mineral-dust and sea-salt particles decreased with increasing altitude. The K-bearing particles increased within a biomass burning (BB) plume at altitudes > 3900 m, which originated from Siberia. Chlorine in sea-salt particles was replaced with sulfate at high altitudes. These results suggest that the sources, transport, and aging of Arctic aerosols largely vary depending on the altitude and air-mass history. We also provide the occurrences of solid-particle inclusions (soot, fly-ash, and Fe-aggregate particles), some of which are light-absorbing particles. They were mainly emitted from anthropogenic and biomass burning sources and were embedded within other relatively large host particles. Our TEM measurements revealed the detailed mixing state of individual particles at various altitudes in the Arctic. This information facilitates the accurate evaluation of the aerosol influences on Arctic haze, radiation balance, cloud formation, and snow/ice albedo when deposited.


2016 ◽  
Author(s):  
Robert J. Parker ◽  
Hartmut Boesch ◽  
Martin J. Wooster ◽  
David P. Moore ◽  
Alex J. Webb ◽  
...  

Abstract. The 2015–2016 strong El Niño event has had a dramatic impact on the amount of Indonesian biomass burning, with the El Niño driven drought further desiccating the already drier than normal landscapes that are the result of decades of peatland draining, widespread deforestation, anthropogenically-driven forest degradation, and previous large fire events. It is expected that the 2015–16 Indonesian fires will have emitted globally significant quantities of greenhouse gases (GHGs) to the atmosphere, as did previous El Niño driven fires in the region. The form which the carbon released from the combustion of the vegetation and peat soils takes has a strong bearing on its atmospheric chemistry and climatological impacts. Typically, burning in tropical forests and especially in peatlands is expected to involve a much higher proportion of smouldering combustion than the more flaming-characterised fires that occur in fine-fuel dominated environments such as grasslands, consequently producing significantly more CH4 (and CO) per unit of fuel burned. However, currently there have been no aircraft campaigns sampling Indonesian fire plumes, and very few ground-based field campaigns (none during El Niño), so our understanding of the large-scale chemical composition of these extremely significant fire plumes is surprisingly poor compared to, for example, those of southern Africa or the Amazon. Here, for the first time, we use satellite observations of CH4 and CO2 from the Greenhouse gases Observing SATellite (GOSAT) made in large scale plumes from the 2015 El Niño-driven Indonesian fires to probe aspects of their chemical composition. We demonstrate significant modifications in the concentration of these species in the regional atmosphere around Indonesia, due to the fire emissions. Using CO and fire radiative power (FRP) data from the Copernicus Atmosphere Service, we identify fire-affected GOSAT soundings and show that peaks in fire activity are followed by subsequent large increases in regional greenhouse gas concentrations. CH4 is particularly enhanced, due to the dominance of smouldering combustion in peatland fires, with CH4 total column values typically exceeding 35 ppb above that of background "clean air" soundings. By examining the CH4 and CO2 excess concentrations in the fire-affected GOSAT observations, we determine the CH4/CO2 fire emission ratio for the entire 2-month period of the most extreme burning (September–October 2015), and also for individual shorter periods where the fire activity temporarily peaks. We demonstrate that the overall CH4 to CO2 emission ratio (ER) for fires occurring in Indonesia over this time is 6.2 ppb/ppm. This is higher than that found over both the Amazon (5.1 ppb/ppm) and southern Africa (4.4 ppb/ppm), consistent with the Indonesian fires being characterised by an increased amount of smouldering combustion due to the large amount of organic soil (peat) burning involved. We find the range of our satellite-derived Indonesian ERs (6.18 ppb/ppm to 13.6 ppb/ppm) to be relatively closely matched to that of a series of "close-to-source" ground-based sampling measurements made on Kalimantan at the height of the fire event (7.53 to 19.67 ppb/ppm), although typically the satellite-derived quantities are slightly lower on average. This seems likely to be because our field sampling mostly intersected smaller-scale peat burning plumes, whereas the large-scale plumes intersected by the GOSAT TANSO-FTS footprints would very likely come from burning that was occurring in a mixture of fuels that included peat, tropical forest and already cleared areas of forest characterised by vegetation types that are more fire-prone than the natural rainforest biome (e.g. post-fire areas of ferns and scrubland, along with agricultural vegetation). The ability to determine large-scale emission ratios from satellite data allows the combustion behaviour of very large regions of burning to be characterised and understood in a way not possible with ground-based studies, and which can be logistically difficult and very costly to consider using aircraft observations. We therefore believe the method demonstrated here provides a further important tool for characterising biomass burning emissions, and that the GHG emission ratios derived for the first time for these large-scale Indonesian fire plumes during an El Niño event, points the way to more routinely assessing spatio-temporal variations in biomass burning emission ratios using future satellite missions that will have more complete spatial sampling than GOSAT, and that will enable the contributions of these fires to the regional atmospheric chemistry and climate to be better understood.


2012 ◽  
Vol 12 (9) ◽  
pp. 23433-23469 ◽  
Author(s):  
A. C. Lewis ◽  
M. J. Evans ◽  
J. R. Hopkins ◽  
S. Punjabi ◽  
K. A. Read ◽  
...  

Abstract. Boreal forest fires are a significant source of chemicals to the atmosphere including numerous non-methane hydrocarbons (NMHCs). We report airborne measurements of NMHCs, acetone and methanol from > 500 whole air samples collected over Eastern Canada, including interception of several different boreal biomass burning plumes. From these and concurrent measurements of carbon monoxide (CO) we derive fire emission ratios for 29 different species relative to the emission of CO. These range from 8.9 ± 3.2 ppt ppb−1 CO for methanol to 0.007 ± 0.004 ppt ppb−1 CO for cyclopentane. The ratios are in good to excellent agreement with recent literature values. Using the GEOS-Chem global 3-D chemical transport model (CTM) we show the influence of biomass burning on the global distributions of benzene, toluene, ethene and propene (species considered generally as indicative tracers of anthropogenic activity). Using our derived emission ratios and the GEOS-Chem CTM, we show that biomass burning can be the largest fractional contributor to observed benzene, toluene, ethene and propene in many global locations. The widespread biomass burning contribution to atmospheric benzene, a heavily regulated air pollutant, suggests that pragmatic approaches are needed when setting air quality targets as tailpipe and solvent emissions continue to decline. We subsequently determine the extent to which the 28 Global WMO-GAW stations worldwide are influenced by biomass burning sourced benzene, toluene, ethene and propene when compared to their exposure to anthropogenic emissions.


2012 ◽  
Vol 12 (3) ◽  
pp. 8107-8168 ◽  
Author(s):  
M. O. Andreae ◽  
P. Artaxo ◽  
V. Beck ◽  
M. Bela ◽  
S. Freitas ◽  
...  

Abstract. We present the results of airborne measurements of carbon monoxide (CO) and aerosol particle number concentration (CN) made during the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) program. The primary goal of BARCA is to address the question of basin-scale sources and sinks of CO2 and other atmospheric carbon species, a central issue of the Large-scale Biosphere-Atmosphere (LBA) program. The experiment consisted of two aircraft campaigns during November–December 2008 (BARCA-A) and May 2009 (BARCA-B), which covered the altitude range from the surface up to about 4500 m, and spanned most of the Amazon Basin. Based on meteorological analysis and measurements of the tracer, SF6, we found that airmasses over the Amazon Basin during the late dry season (BARCA-A, November 2008) originated predominantly from the Southern Hemisphere, while during the late wet season (BARCA-B, May 2009) low-level airmasses were dominated by northern-hemispheric inflow, and mid-tropospheric airmasses were of mixed origin. In BARCA-A we found strong influence of biomass burning emissions on the composition of the atmosphere over much of the Amazon Basin, with CO enhancements up to 300 ppb and CN concentrations approaching 10 000 cm−3; the highest values were in the southern part of the Basin at altitudes of 1–3 km. The ΔCN/ΔCO ratios were diagnostic for biomass burning emissions, and were lower in aged than in fresh smoke. Fresh emissions indicated CO/CO2 and CN/CO emission ratios in good agreement with previous work, but our results also highlight the need to consider the residual smoldering combustion that takes place after the active flaming phase of deforestation fires. During the late wet season, in contrast, there was little evidence for a significant presence of biomass smoke. Low CN concentrations (300–500 cm−3) prevailed basinwide, and CO mixing ratios were enhanced by only ~10 ppb above the mixing line between Northern and Southern Hemisphere air. There was no detectable trend in CO with distance from the coast, but there was a small enhancement of CO in the boundary layer suggesting diffuse biogenic sources from photochemical degradation of biogenic volatile organic compounds or direct biological emission. Simulations of CO distributions during BARCA-A using a range of models yielded general agreement in spatial distribution and confirm the important contribution from biomass burning emissions, but the models evidence some systematic quantitative differences compared to observed CO concentrations. These mismatches appear to be related to problems with the accuracy of the global background fields, the role of vertical transport and biomass smoke injection height, the choice of model resolution, and reliability and temporal resolution of the emissions data base.


2020 ◽  
Author(s):  
Patrick A. Barker ◽  
Grant Allen ◽  
Thomas Bannan ◽  
Archit Mehra ◽  
Keith N. Bower ◽  
...  

Abstract. Airborne sampling of methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and nitrous oxide (N2O) mole fractions was conducted during field campaigns targeting fires over Senegal in February and March 2017, and Uganda in January 2019. The majority of fire plumes sampled were close to, or directly over burning vegetation, with the exception of two longer-range flights over the West African Atlantic seaboard, (100–300 km from source) where the continental outflow of biomass burning emissions from a wider area of West Africa was sampled. Fire Emission Factors (EFs) and modified combustion efficiencies (MCEs) were estimated from the enhancements in measured mole fractions. For the Senegalese fires, mean EFs and corresponding one-standard deviation variabilities, in units of g per kg of dry fuel were 1.8 (± 0.06) for CH4, 1633 (± 56.4) for CO2 and 679 (± 1.6) for CO, with a mean MCE of 0.94 (± 0.005). For the Ugandan fires, mean EFs (in units of g kg−1) were 3.1 (± 0.1) for CH4, 1610 (± 54.9) for CO2 and 78 (± 1.9) for CO, with a mean modified combustion efficiency of 0.93 (± 0.004). A mean N2O EF of 0.08 (± 0.002) g kg−1 is also reported for one flight over Uganda; issues with temperature control of the instrument optical bench prevented N2O EFs from being obtained for other flights over Uganda. This study has provided new datasets of African biomass burning EFs and MCEs for two distinct study regions, in which both have been studied little by aircraft measurement previously. These results highlight the important intracontinental variability of biomass burning trace gas emissions, and can be used to better constrain future biomass burning emission budgets. More generally, these results highlight the importance of regional and fuel-type variability when attempting to spatially scale biomass burning emissions. Further work to constrain EFs at more local scales and for more specific (and quantifiable) fuel types will serve to improve global estimates of biomass burning emissions of climate-relevant gases.


2017 ◽  
Vol 17 (22) ◽  
pp. 13999-14023 ◽  
Author(s):  
Hannah M. Horowitz ◽  
Rebecca M. Garland ◽  
Marcus Thatcher ◽  
Willem A. Landman ◽  
Zane Dedekind ◽  
...  

Abstract. The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM) with ground-based remote retrievals across Africa, and additionally provide an analysis of observed aerosol optical depth at 550 nm (AOD550 nm) and Ångström exponent data from 34 Aerosol Robotic Network (AERONET) sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550 nm across the continent and the transport of these emissions to regions outside of the continent. In general, CCAM captures the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multiyear monthly average AOD550 nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except the Réunion St Denis Island site (Réunion St. Denis). The timing of modeled peak AOD550 nm in southern Africa occurs 1 month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula) are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550 nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon, and sulfate aerosols. The model's performance provides confidence for using the model to estimate large-scale regional impacts of African aerosols on radiative forcing, but local feedbacks between dust aerosols and climate over northern Africa and the Mediterranean may be overestimated.


2017 ◽  
Author(s):  
Hannah M. Horowitz ◽  
Rebecca M. Garland ◽  
Marcus Thatcher ◽  
Willem A. Landman ◽  
Zane Dedekind ◽  
...  

Abstract. The sensitivity of climate models to the characterization of African aerosol particles is poorly understood. Africa is a major source of dust and biomass burning aerosols and so this represents an important research gap in understanding the impact of aerosols on radiative forcing of the climate system. Here we evaluate the current representation of aerosol particles in the Conformal Cubic Atmospheric Model (CCAM) with ground-based observations across Africa, and additionally provide an analysis of aerosol optical depth at 550 nm (AOD550nm) and Ångström exponent data from thirty-four Aerosol Robotic Network (AERONET) sites. Analysis of the 34 long-term AERONET sites confirms the importance of dust and biomass burning emissions to the seasonal cycle and magnitude of AOD550nm across the continent and the transport of these emissions to regions outside of the continent. Western African sites had the largest AOD550nm values, on average, with the timing and magnitude of AOD550nm maxima dominated by desert dust. The impact of dust on aerosol loading is also apparent at northern African sites, with peak AOD550nm occurring later than the western sites. The seasonal variation in the location of the intertropical convergence zone and associated northward shift in dust transport may be responsible for the shift in timing of maximum AOD550nm between the western and northern African sites. Southern African sites have the lowest AOD550nm values on average, and peak during the biomass burning period. The outflow of these aerosol particles was observed at Ascension Island and Reunion Island AERONET stations. In general, CCAM captures well the seasonality of the AERONET data across the continent. The magnitude of modeled and observed multi-year monthly average AOD550nm overlap within ±1 standard deviation of each other for at least 7 months at all sites except Reunion Island. The timing of peak AOD550nm in southern Africa in the model occurs one month prior to the observed peak, which does not align with the timing of maximum fire counts in the region. For the western and northern African sites, it is evident that CCAM currently overestimates dust in some regions while others (e.g., the Arabian Peninsula) are better characterized. This may be due to overestimated dust lifetime, or that the characterization of the soil for these areas needs to be updated with local information. The CCAM simulated AOD550nm for the global domain is within the spread of previously published results from CMIP5 and AeroCom experiments for black carbon, organic carbon and sulfate aerosols. The model’s performance provides confidence for using the model to estimate large-scale regional impacts of African aerosols on radiative forcing, but local feedbacks between dust aerosols and climate over northern Africa and the Mediterranean may be overestimated.


Sign in / Sign up

Export Citation Format

Share Document